结合空频域多尺度特征的植株叶片分割方法
DOI:
CSTR:
作者:
作者单位:

1.云南大学信息学院 昆明 650504; 2.云南省高校物联网技术及应用重点实验室 昆明 650504; 3.云南省烟草农业科学研究院 昆明 650021

作者简介:

通讯作者:

中图分类号:

TP391.41

基金项目:

云南省烟草公司重大科技项目(2021530000241025)、云南大学第十三届研究生科研创新项目(2021Y259)资助


Plant segmentation method based on multi-scale fusion network of spatial-frequency domain features
Author:
Affiliation:

1.School of Information, Yunnan University,Kunming 650504, China; 2.University Key Laboratory of Internet of Things Technology and Application, Yunnan Province,Kunming 650504, China; 3.Yunnan Academy of Tobacco Agriculture Science,Kunming 650021, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为实现植物表型参数的精准获取,针对自然环境下不同尺度叶片分割的细节损失问题,提出结合空频域多尺度特征的植株叶片分割方法。以U-Net网络架构为基础,设计下采样频域变换模块,在卷积神经网络中引入频域特征表示替换池化层,利用2D-DCT和2D-IDCT的频域变换方法感知植株叶片目标的全局语义特征;构建多尺度特征融合模块,增加6个上采样节点,提取和连接植株叶片图像细粒度的特征信息;改进通道注意力模块学习分支特征,采用联合损失函数优化网络性能。在2017CVPPP公开数据集上开展实验,结果表明,植株叶片分割网络的交叉比、平均交叉比、像素准确率、精准率和F-score分数分别达到了97.07%、98.04%、99.53%、99.68%和99.74%。与FCN-8s、FCN-ResNet、DeepLabV3+、SegNet和U-Net模型相比,网络的交叉比和平均交叉比最高提升23.32%和12.43%,在较小尺度和细节处理上改善了植株叶片的分割精度,可为植物表型方向的应用研究提供一种可借鉴的思路。

    Abstract:

    To improve the effect of plant segmentation and achieve accurate acquisition of plant phenotypic parameters, this study proposes a plant segmentation network to fuse spatial-frequency domain feature representation. Based on the U-Net network architecture, the frequency domain transform module is built for down-sampling, the frequency domain feature representation is introduced in the convolutional neural network to replace the pooling layer, and the frequency domain transform method of 2D-DCT and 2D-IDCT is used to perceive the global semantic features of the plant. The multi-scale feature fusion module is constructed by adding six up-sampling nodes to extract and connect the fine-grained feature information of the plant image. The channel attention module is modified to learn branch features and the hybrid loss function is employed to optimize the network. Experiments are conducted on the 2017 CVPPP public dataset, and the results show that the intersection over union, mean intersection over union, pixel accuracy, precision and F1 of the plant segmentation network reach 97.07%, 98.04%, 99.53%, 99.68% and 99.74%, respectively. Compared with the FCN-8s, FCN-ResNet, DeepLabV3+, SegNet and U-Net models, the intersection over union and mean intersection over union of the network were improved by up to 23.32% and 12.43%. The proposed method can improve the segmentation accuracy of plant at smaller scales in detail processing, and it can provide a useful idea for applied research in the plant phenotype.

    参考文献
    相似文献
    引证文献
引用本文

罗薇,陈峰,张晓伟,梁虹,李军营.结合空频域多尺度特征的植株叶片分割方法[J].电子测量技术,2023,46(3):166-174

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-02-26
  • 出版日期:
文章二维码