一种射频芯片检测中的邦球邦线识别方法
DOI:
CSTR:
作者:
作者单位:

1.东南大学生物科学与医学工程学院 南京 210096; 2.明锐理想科技有限公司 深圳 518000

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:


A recognition method for detecting the solder joint and wire bonding of RF chips
Author:
Affiliation:

1.School of Biological Science and Medical Engineering, Southeast University,Nanjing 210096, China; 2.Magic Ray Technology Co., Ltd., Shenzhen 518000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对引线键合效果的判定,本文提出了一种基于AI的AOI检测射频芯片引线键合效果的邦球邦线识别方法。该方法根据邦球邦线识别任务特点,改进了Mask R-CNN中特征金字塔层先验框生成机制,同时引入了基于碰撞检测的数据增强方式,提升了网络性能和效率,降低了人工标注成本。结果表明,改进后的Mask R-CNN模型可获取射频芯片中邦球和邦线的准确分割位置,mAP为85.23%,mIoU为71.27%,单幅射频芯片图像推理耗时约为1.168 s,基本满足生产中对于射频芯片装配精度以及速度的要求。通过本方法分割出邦球邦线,可辅助引线键合效果判断,在一定程度上提升了效率降低了人工成本。

    Abstract:

    This paper proposed a solder joint and wire bonding segmentation approach for detecting the bonding effect of RF chip based on AOI. According to the characteristics of solder joint and wire bonding segmentation task, this method improves the prior frame generation mechanism of the feature pyramid layer in Mask R-CNN. Also, it introduces a data enhancement method based on collision detection, which reduces manual annotation cost. The results show that the improved Mask R-CNN model can obtain the accurate segmentation positions of the solder joint and wire bonding in RF chips with mAP of 85.23% and mIoU of 71.27%. Meanwhile, this method speeds up to 1.168 per image, which basically meets the requirements for RF chip speed in production. Overall, the proposed method achieves high segmentation accuracy and meets the industrial production requirements for timeliness to a certain extent in the solder joint and wire bonding segmentation task.

    参考文献
    相似文献
    引证文献
引用本文

曾子炀,成汉林,周静,刘鹏飞,罗守华.一种射频芯片检测中的邦球邦线识别方法[J].电子测量技术,2023,46(5):129-124

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-02-22
  • 出版日期:
文章二维码