基于AMSDAE-BLSTM的工业过程质量预测
DOI:
CSTR:
作者:
作者单位:

沈阳化工大学信息工程学院 沈阳 110142

作者简介:

通讯作者:

中图分类号:

TP183

基金项目:

国家自然科学基金(61673279)、辽宁省教育厅项目(LJ2020021)资助


Industrial process quality prediction based on AMSDAE-BLSTM
Author:
Affiliation:

School of Information Engineering, Shenyang University of Chemical Technology,Shenyang 110142, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对具有噪声干扰及延迟等特性的工业过程质量预测,本文提出了一种嵌入注意力机制的堆叠降噪自编码器与双向长短期记忆网络的方法。首先以无监督方式构建自编码器模型,利用高斯噪声对工业数据进行一次重构以实现去噪及去冗余作用;再次嵌入注意力机制对过程变量权重分配进行二次重构以实现深度特征提取;最后采用双向长短期记忆网络学习重构数据的时间序列趋势特征,克服数据间的延迟性,充分挖掘过程变量与质量变量间的潜在关系,实现精准预测。通过脱丁烷过程的单质量变量预测和硫磺回收过程的多变量质量预测仿真实验,验证了本文方法比BP、LSTM、BLSTM和DAE-BLSTM方法具有更精确的预测效果。

    Abstract:

    Aiming at the prediction of industrial process quality with noise interference and delay, in this paper,we propose a method of stacking noise reduction auto-encoder embedded with attention mechanism and bidirectional long short-term memory network. Firstly, the AE model is constructed in an unsupervised manner, and the industrial data is reconstructed with Gaussian noise processing to achieve denoising and de-redundancy. Secondly, embed the attention mechanism to reconstruct the weight allocation of process variables to achieve deep feature extraction. Finally, the BLSTM network is used to learn and reconstruct the time series trend characteristics of the data to overcome the delay between the data, and fully explore the potential relationship between the process variables and the quality variables, and finally achieve accurate prediction. Through the simulation experiments of single-mass variable prediction of debutane process and multivariate mass prediction of sulfur recovery process, it is verified that the proposed method has a more accurate prediction effect than other methods such as BP, LSTM, BLSTM and DAE-BLSTM.

    参考文献
    相似文献
    引证文献
引用本文

郭小萍,钟道金,李元.基于AMSDAE-BLSTM的工业过程质量预测[J].电子测量技术,2023,46(4):19-24

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-02-22
  • 出版日期:
文章二维码