基于神经批采样的轮胎X光图像异常检测研究
DOI:
CSTR:
作者:
作者单位:

1.沈阳理工大学 沈阳 110000; 2.沈阳工业大学体育装备产业技术研究院 沈阳 110870

作者简介:

通讯作者:

中图分类号:

TP2

基金项目:

辽宁省教育厅项目(LJGD2020019)资助


Research on tire X-ray image anomaly detection based on neural batch sampling
Author:
Affiliation:

1.Shenyang Ligong University,Shenyang 110000,China; 2.Sports Equipment Industry Technology Research Institute, Shenyang University of Technology,Shenyang 110870,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    轮胎缺陷检测对轮胎定级有重要参考意义,研究高性能的轮胎异常检测方法尤为重要。本文以强化学习算法为基础,提出一个以损失值异常变化作为判断异常特征的图像自动分类算法。该方法首先通过大量的正向样本输入来降低数据在经过梯度更新之后的损失值,从而与少量异常样本输入时的损失值形成明显差异,再引入神经批采样器,放大异常样本与正向样本之间的损失轮廓差异并为空间变分编码器提供训练批次,然后将训练结果作为异常分类器的输入,最后完成异常检测的分类与定位工作,经过对比研究发现本文提出的异常检测算法在轮胎缺陷样本集上性能明显优于其他传统图像异常检测方法。

    Abstract:

    Tire defect detection has important reference significance for tire grading, and it is particularly important to study the high performance tire anomaly detection method. Based on reinforcement learning algorithm, an automatic image classification algorithm based on abnormal loss value is proposed. This method firstly by a large number of positive samples input to reduce the loss value of data after gradient update, with a small amount of the loss of the abnormal sample input values form the obvious difference, introducing neural sampler, enlarge abnormal loss of contour difference between samples and the positive samples and provide training to sVAE batch, then put the training result as input of abnormal classifier, Finally, the classification and location of anomaly detection are completed. Through comparative study, it is found that the anomaly detection algorithm proposed in this paper is obviously superior to other traditional image anomaly detection methods in tire defect sample sets.

    参考文献
    相似文献
    引证文献
引用本文

刘韵婷,李绅科,郭辉,于清淞.基于神经批采样的轮胎X光图像异常检测研究[J].电子测量技术,2023,46(5):157-163

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-02-22
  • 出版日期:
文章二维码