决策空间自组织多模态多目标鲸鱼优化算法研究
DOI:
CSTR:
作者:
作者单位:

1.华北理工大学电气工程学院 唐山 063210; 2.唐山学院 唐山 063000; 3.唐山市半导体集成电路重点实验室 唐山 063000

作者简介:

通讯作者:

中图分类号:

TP301.6

基金项目:

河北省自然科学基金(F202109006)、河北省自然科学基金-钢铁联合研究基金(E2019105123)、河北省高等学校科学技术研究项目(ZD2019311)资助


Research on self-organizing multi-modal multi-objective whale optimization algorithm in decision space
Author:
Affiliation:

1.School of Electrical Engineering, North China University of Technology, Tangshan 063210, China; 2.Tangshan University, Tangshan 063000, China; 3.Tangshan Key Laboratory of Semiconductor Integrated Circuits, Tangshan 063000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对当前多模态多目标优化算法在获得Pareto解集的完整性、收敛性方面的不足,提出了一种决策空间自组织多模态多目标鲸鱼优化算法(MMO_SOM_WOA)。首先将鲸鱼优化算法首次用于求解多模态多目标问题,通过鲸鱼优化算法本身的随机性提高寻找Pareto解集完整性的能力。其次将自组织映射网络与鲸鱼优化算法相结合,迭代开始时为鲸鱼优化算法建立良好的邻域。最后使用精英反向学习策略初始化种群和非支配排序机制获得均匀且完整的解。通过与当前5种经典算法在多模态多目标优化问题上进行仿真对比,结果表明MMO_SOM_WOA算法兼顾Pareto解集的多样性和Pareto解的完整性,收敛速度和收敛精度均得到提升具有较高的性能,有效解决多模态多目标优化问题。

    Abstract:

    Aiming at the deficiency of current multi-mode multi-objective optimization algorithm in obtaining the integrity and convergence of Pareto solution set, a decision space self-organizing multi-mode multi-objective whale optimization algorithm (MMO_SOM_WOA) is proposed. First, whale optimization algorithm is used to solve multi-modal multi-objective problems for the first time, and the ability to find the integrity of Pareto solution set is improved through the randomness of whale optimization algorithm itself. Secondly, the self-organizing mapping network is combined with whale optimization algorithm to establish a good neighborhood for whale optimization algorithm at the beginning of iteration. Finally, the elite reverse learning strategy is used to initialize the population and non dominated sorting mechanism to obtain uniform and complete solutions. Through simulation comparison with the current five classical algorithms on multi-modal multi-objective optimization problems, the results show that MMO_SOM_WOA algorithm takes into account both the diversity of Pareto solution set and the integrity of Pareto solution. The convergence speed and convergence accuracy are improved and have high performance, effectively solving multi-modal and multi-objective optimization problems.

    参考文献
    相似文献
    引证文献
引用本文

刘智睿,杨志刚,赵志伟,苏皓,葛超.决策空间自组织多模态多目标鲸鱼优化算法研究[J].电子测量技术,2023,46(4):48-55

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-02-22
  • 出版日期:
文章二维码