基于LSD聚类拟合与KF的轨道检测算法
DOI:
CSTR:
作者:
作者单位:

中国民用航空飞行学院航空电子电气学院 广汉 618307

作者简介:

通讯作者:

中图分类号:

U298.12;V279

基金项目:

四川省科技厅项目(2022JDKP0093)资助


Track detection algorithm based on LSD cluster fitting and KF
Author:
Affiliation:

Aviation Electronic and Electrical Institute, Civil Aviation Flight University of China,Guanghan 618307,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统无人机巡检中视觉轨道识别的识别效率低、精度差的问题,提出了一种基于LSD的约束聚类拟合与卡尔曼滤波相结合的轨道线检测算法。首先针对由于镜头视角造成的视角畸变,采用IPM算法矫正,并通过LSD算法检测出轨道轮廓,在轨道间距约束将LSD检测结果进行聚类并进行最小二乘拟合得到轨道直线。然后根据轨道几何特征和无人机动力学特性建立数学模型,并结合卡尔曼滤波器对轨道坐标信息进行跟踪估计,以保证算法的稳定性和鲁棒性。采用无人机采集多个场景的轨道图像作为测试样本,对检测算法与其他算法进行对比实验。实验结果表明,本文轨道识别算法优于其他算法,其轨道准确识别率达到92.49%,识别速率达到23 frame/s,满足轨道检测的稳定性和实时性要求。

    Abstract:

    Aiming at the problems of low efficiency and poor precision of visual track recognition in traditional UAV inspection, an algorithm for track detection based on LSD constrained cluster fitting and Kalman filter is proposed. Firstly, IPM algorithm was used to correct the Angle distortion caused by the lens Angle, and the track contour was detected by LSD algorithm. Under the constraint of track spacing, LSD results were clustered and the track lines were obtained by least square fitting. Then, a mathematical model is established according to the geometric characteristics of the orbit and the dynamics characteristics of UAV, and the track coordinate information is estimated by Kalman filter to ensure the stability and robustness of the algorithm. The trajectory images of multiple scenes collected by UAV are used as test samples, and the detection algorithm is compared with other algorithms. The experimental results show that the track recognition algorithm in this paper is better than other algorithms, and its track accuracy recognition rate reaches 92.49%, and the recognition rate reaches 23 frame/s, which meets the stability and real-time requirements of track detection.

    参考文献
    相似文献
    引证文献
引用本文

刘佳嘉,白颍昊.基于LSD聚类拟合与KF的轨道检测算法[J].电子测量技术,2023,46(4):99-106

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-02-22
  • 出版日期:
文章二维码