复杂环境下多模态特征融合的疲劳驾驶检测
DOI:
CSTR:
作者:
作者单位:

1.长江大学电子信息学院 荆州 434023; 2.浙江宇视科技有限公司 杭州 310051; 3.长江大学计算机科学学院 荆州 434023; 4.中南大学计算机学院 长沙 410083

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:

国家自然科学基金(62272485)、新疆维吾尔自治区自然科学基金(2020D01A131)项目资助


Fatigue driving detection with multi-modal feature fusion in complex environments
Author:
Affiliation:

1.School of Electronic Information, Yangtze University,Jingzhou 434023, China; 2.Zhejiang Uniview Technologies Co., Ltd.,Hangzhou 310051, China; 3.School of Computer Science, Yangtze University,Jingzhou 434023, China; 4.School of Computer Science, Central South University,Changsha 410083, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了避免因疲劳驾驶而导致交通事故的发生,维护城市道路交通和驾乘人员生命安全,该项目针对传统疲劳驾驶检测方法存在着精度低、参数复杂、泛化能力差等核心问题,采用MTCNN模型和基于红外的rPPG等理论,在光照变化、部分遮挡和头部偏转等复杂行车环境下精确提取驾驶员面部与生理信息;同时在深层挖掘多模态的特定疲劳信息后,结合多损失重构(MLR)的特征融合模块利用各模态间的互补信息,避免了单模态检测方法存在的局限性,进一步构建了多模态特征融合模型,增强模型的准确性与鲁棒性;最后考虑到疲劳的时序性,基于Bi-LSTM模型建立了疲劳驾驶检测模块。在自制数据集FAHD上展开实验,证明了红外生理特征提取模型的可靠性,多模态特征输入的有效性,同时与现有融合方法相比,本文方法融合后的预测结果与疲劳标定值间的相关系数提高了5.6%,均方根误差减少25%,疲劳检测系统准确率达到了96.7%,在推动智慧交通发展的同时对维护交通安全也有较好的积极意义。

    Abstract:

    In order to avoid the occurrence of traffic accidents caused by fatigue driving and to safeguard urban road traffic as well as occupant safety, this project addresses the core problems in traditional fatigue driving detection methods, such as low accuracy, elaborate parameters and poor generalization, by using the MTCNN and infrared-based rPPG to accurately extract driver’s facial and physiological information in complex driving environments with changing light, partial occlusion and head deflection. At the same time, after deep mining the specific fatigue information of multi-modal modes, combined with the multi-loss reconstruction(MLR) feature fusion module to use the complementary information between each mode are employed to further construct the multimodality feature integration model, which breaks the limitation of single-mode detection methods and improves its the accuracy and robustness in complicated driving environments. Finally, by using the time-series nature of fatigue, a fatigue driving detection system based on the Bi-LSTM model is established. Experiments were conducted on a home-made dataset FAHD, which demonstrated the reliability of the infrared physiological feature extraction model. In addition, the accuracy of multimodal input increased by at least 5.6% compared to the single-modal input, while the correlation coefficient improved by 5.6% and the root mean square error was reduced by 25% compared to existing fusion methods, achieving an accuracy of 96.7%. While promoting the development of intelligent transportation, it also has a good positive significance for the maintenance of traffic safety.

    参考文献
    相似文献
    引证文献
引用本文

高绮煌,谢凯,贺正方,文畅,贺建飚,张伟.复杂环境下多模态特征融合的疲劳驾驶检测[J].电子测量技术,2023,46(6):106-115

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-02-19
  • 出版日期:
文章二维码