基于DRF优化采样的无人车轨迹规划方法
DOI:
CSTR:
作者:
作者单位:

齐鲁工业大学(山东省科学院)山东省科学院自动化研究所 济南 250013

作者简介:

通讯作者:

中图分类号:

U461

基金项目:

国家自然科学基金(52072214)、山东省重大科技创新工程项目(2019JZZY010126)资助


Driverless vehicle trajectory planning method based on optimal sampling of DRF
Author:
Affiliation:

Institute of Automation Shandong Academy of Sciences,Qilu University of Technology (Shandong Academy of Sciences), Jinan 250013, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对城市道路场景下无人驾驶汽车最优轨迹生成算法存在的运行时间长、轨迹评价标准单一的问题,提出一种基于行车风险场优化采样区域的无人车轨迹规划方法。该方法通过改进的二维高斯分布函数分别建立静态障碍物和动态障碍物风险场模型,对道路中采样区域目标点的行车风险进行量化,通过卷积的方式选定行车风险较小区域的采样目标点生成最优轨迹。仿真结果表明,该优化方法在每个规划周期只选取部分采样目标点用于轨迹生成,提高了算法的运行效率,使得算法单帧运行时间均小于0.1 s。行车风险场的加入使得算法的采样区域更加符合驾驶人的行为习惯,提高了算法规划结果的拟人化程度,从而保证无人车具有较高的行驶效率。

    Abstract:

    In order to solve the problem of long running time of single frame and single trajectory evaluation criteria existing in the optimal trajectory generation algorithm of driverless vehicles in urban road scenarios, a driverless vehicle trajectory planning method based on driving risk field to optimize sampling area was proposed. In this method, static and dynamic obstacle risk field models were established respectively through two-dimensional Gaussian distribution to quantify the target point of the sampling area on road. The sampling target points in the areas with low driving risks were selected by convolution to generate the optimal trajectory. The simulation results show that this optimization method only selects part of the sampling target points for trajectory generation in each planning period, which improves the running efficiency of the algorithm and makes the running time of each frame of the algorithm less than 0.1 s. The addition of driving risk field makes the sampling area of algorithm more consistent with the drivers′ behavior and habits, improves the degree of anthropomorphism of the algorithm planning results, and ensures the high driving efficiency of the driverless vehicle.

    参考文献
    相似文献
    引证文献
引用本文

李研强,郑亚雯,张岱峰,李超,张超.基于DRF优化采样的无人车轨迹规划方法[J].电子测量技术,2023,46(5):105-112

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-02-22
  • 出版日期:
文章二维码