超轻量人脸关键点检测算法
DOI:
CSTR:
作者:
作者单位:

1.桂林电子科技大学电子工程与自动化学院 桂林 541004; 2.智能综合自动化广西高校重点实验室 桂林 541004

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:


Ultra-lightweight facial landmark detector
Author:
Affiliation:

1.School of Computer Science and Engineering, Guilin University of Electronic Technology,Guilin 541004, China; 2.Key Laboratory of Intelligence Integrated, Automation in Guanxi Universities,Guilin 541004, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着深度学习网络研究的深入和网络模型精度的提高,网络层数及深度在逐渐增加,导致计算量增大。同时,基于深度学习模型人脸关键点检测在嵌入式设备上部署的需求,轻量化、高效和准确的网络模型成为研究关键。因此,本文设计了一个基于Ghost Model块和Ghost Bottleneck架构的超轻量型人脸关键点检测算法,在确保网络精度的同时,尽可能减小网络模型大小,降低计算量。在网络宽度因子为1X的情况下,与现有表现最好的轻量化网络模型PFLD 1X相比,归一化平均误差降低了7%,参数量减小了36%;在宽度因子为0.25X的情况下,本论文提出的网络模型大小仅420 KB,归一化平均误差降低了6.6%,参数量减小了25%。

    Abstract:

    The number of layers and the depth of the network are gradually increasing as the research on deep learning networks deepens and the accuracy of the network model improves, leading to an increase in computation. The lightweight, efficient and accurate network model becomes the key to research based on the need of deep learning model facial landmark detection for deployment on embedded devices. Therefore, an ultra-lightweight facial landmark detection network based on Ghost Model and Ghost Bottleneck is designed in this thesis to ensure the network accuracy while minimizing the network model size and reducing the computational effort. With a network width factor of 1X, the normalized mean error is reduced by 7% and the number of parameters is reduced by 36% compared to the best performing lightweight network model PFLD 1X; with a width factor of 0.25X, the proposed network model is only 420 KB in size, and the normalized mean error is reduced by 6.6% and the number of parameters is reduced by the average normalized error is reduced by 6.6% and the number of parameters is reduced by 25%.

    参考文献
    相似文献
    引证文献
引用本文

朱望纯,张博.超轻量人脸关键点检测算法[J].电子测量技术,2023,46(5):98-104

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-02-22
  • 出版日期:
文章二维码