基于模板与内容分离的票据识别方法
DOI:
CSTR:
作者:
作者单位:

上海电力大学电子与信息工程学院 上海 201306

作者简介:

通讯作者:

中图分类号:

TP391.1

基金项目:


Bill recognition method based on template and content separation
Author:
Affiliation:

School of Electronic and Information Engineering, Shanghai University of Electric Power,Shanghai 201306, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    票据的自动识别是票据数据化以及提高票据信息处理能力的重要手段之一。考虑到相同类型票据的规格统一,结构相同以及存在大量重复信息,提出了一种基于模版与内容分离的票据识别方法。该方法通过颜色分割将票据的结构及固有文字提取为模版,剩余部分作为票据内容。结合改进的孪生神经网络和模板对齐将待测票据模版与模版数据库中已有票据匹配然后重建新的票据。结果表明,与原方法百度OCR相比,该方法在文字检测时间、识别时间分别降低了68%、91.13%,整体预测时间降低了88.62%,达到3.45 s/张。

    Abstract:

    Automatic identification of bills is one of the important means of bill digitization and improving bill information processing ability. Considering the uniform specifications, the same structure and a large amount of duplicate information of the same type of bills, a bill recognition method based on template and content separation is proposed. In this method, the structure and inherent text of the bill are extracted as templates through color segmentation, and the rest is used as the content of the bill. Combined with the improved siamese neural network and template alignment, the bill template to be tested is matched with the existing bill in the template database, and then the new bill is reconstructed. The results show that compared with the original method Baidu OCR, the text detection time and recognition time of this method are reduced by 68% and 91.13% respectively, and the overall prediction time is reduced by 88.62%, reaching 3.45 seconds/piece.

    参考文献
    相似文献
    引证文献
引用本文

时瑞,蒋三新.基于模板与内容分离的票据识别方法[J].电子测量技术,2023,46(6):122-128

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-02-19
  • 出版日期:
文章二维码