基于改进生成对抗网络的无监督晶圆缺陷检测
DOI:
CSTR:
作者:
作者单位:

上海电力大学电子与信息工程学院 上海 201306

作者简介:

通讯作者:

中图分类号:

TP391.41;TN407

基金项目:


Unsupervised wafer defect detection based on improved generative adversarial network
Author:
Affiliation:

School of Electronic and Information Engineering, Shanghai University of Electric Power,Shanghai 201306, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为实现晶圆表面缺陷的无监督检测,提出了一种改进生成对抗网络的无监督晶圆表面缺陷检测模型,该模型通过目标图像与重构图像之间的差异来检测缺陷。该方法使用带有两层跳跃连接和记忆模块的编码器-解码器卷积神经网络来搭建生成器,跳跃连接用以捕获多尺度的输入图像特征,记忆模块对潜在特征实施约束,扩大真实缺陷样本与重构样本间的距离。该方法还通过改进判别器网络结构,使模型轻量化。实验结果表明,该模型能够准确分辨具有缺陷的晶圆样本,ROC曲线下的面积值达到0.934,与已有的无监督学习检测方法相比性能更优,同时判别器网络的参数量和计算量分别降低到1 M和60 M以下。

    Abstract:

    In order to realize unsupervised detection of wafer surface defects, an unsupervised wafer surface defect detection model with improved generative adversarial network was proposed. The model detected the defects by the difference between the target image and the reconstructed image. In this method, an encoder-decoder convolutional neural network with two layers of skip connections and memory module was used to build the generator. The skip connections were used to capture multi-scale input image features, and the memory module was used to constrain latent characteristics to enlarge the distance between real defect samples and reconstructed samples. The method also makes the model lightweight by improving the discriminator network structure. Experimental results show that the proposed model can accurately distinguish the defective wafer samples, and the area value under the ROC curve reaches 0.934, which is better than the existing unsupervised learning detection methods, and the parameters and flops of the discriminator network is reduced to less than 1 M and 60 M.

    参考文献
    相似文献
    引证文献
引用本文

李阳,蒋三新.基于改进生成对抗网络的无监督晶圆缺陷检测[J].电子测量技术,2023,46(6):91-99

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-02-19
  • 出版日期:
文章二维码