通道可分离残差网络的图像超分辨率重建
DOI:
CSTR:
作者:
作者单位:

沈阳航空航天大学电子信息工程学院 沈阳 110136

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:

国家自然科学基金(61901284)、辽宁省重点研发计划项目(2020JH2/10100045)、辽宁省“兴辽英才计划”项目(XLYC1907022)资助


Image super-resolution reconstruction based on channel-separable residual network
Author:
Affiliation:

College of Electronic and Information Engineering, Shenyang Aerospace University,Shenyang 110136, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对现有图像超分辨率重建技术中存在的特征提取方式单一、中间层特征提取不充分等问题,提出了一种通道可分离残差网络。首先,利用多尺度卷积的思想设计出多分支卷积块,充分提取图像的低频信息;其次,利用通道压缩进行降维以精简特征信息,并引入坐标注意力机制对局部融合特征进行增强,通过长短跳跃连接,在加速收敛的同时使得主干网络专注于提取高频特征;最后通过上采样层重建出高分辨率图像。将本算法在Set5、Set14、BSD100和Urban100等4个超分辨率重建领域中公共数据集上进行对比分析,其中在2倍重建任务的Set5数据集上,与DBPN相比,参数量是它的2/5,PSNR和SSIM分别高出0.09 dB和0.001 6。实验结果表明,该算法对图像特征充分提取,以较少的参数量实现了与其他大型模型性能相近甚至更好的重建效果。

    Abstract:

    Aiming at the problems of single feature extraction method and insufficient feature extraction of middle layer in existing image super-resolution reconstruction techniques, a channel-separable residual network based on attention mechanism is proposed. Firstly, a diverse branch block is designed by using the idea of multi-scale convolution to fully extract the low-frequency information of the image. Secondly, channel compression is used to reduce dimension to simplify feature information, and coordinate attention mechanism is introduced to enhance local fusion features. The trunk network is focused on extracting high-frequency features while accelerating convergence through long and short jump connections. Finally, the high-resolution image is reconstructed by upsampling layer. The proposed algorithm is compared and analyzed on the public data sets of Set5, Set14, BSD100 and Urban100 in the super-resolution reconstruction field. On set5 dataset of ×2 reconstruction task, compared with DBPN, parameters is 2/5 of DBPN, the PSNR and SSIM are improved by 0.09 dB and 0.001 6 respectively. Experimental results show that the proposed algorithm can fully extract image features and achieve similar or even better reconstruction results than other large-scale models with fewer parameters.

    参考文献
    相似文献
    引证文献
引用本文

李轩,刘小祎.通道可分离残差网络的图像超分辨率重建[J].电子测量技术,2023,46(6):84-90

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-02-19
  • 出版日期:
文章二维码