基于S-ASPP和双注意力机制的磁瓦外观缺陷检测算法
DOI:
CSTR:
作者:
作者单位:

1.三峡大学电气与新能源学院 宜昌 443002; 2.福建工程学院交通运输学院 福州 350118

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:


S-ASPP and dual attention mechanism based algorithm for tile appearance defect detection
Author:
Affiliation:

1.College of Electrical Engineering and New Energy, China Three Gorges University,Yichang 443002, China; 2.School of Transportation, Fujian University of Technology,Fuzhou 350118, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对现有视觉缺陷检测算法对磁瓦外观识别精度低的问题,提出一种S-ASPP和双注意力机制的磁瓦外观缺陷检测算法。首先,为了解决模型参数量大,网络结构复杂所带来的检测效率低,算法部署硬件成本高等问题,提出采用轻量化GhostNet主干网络提取视觉底层特征;其次,设计S-ASPP模块引入密集连接和深度可分离卷积,以此在降低模型参数量的同时,提高模型的预测速度。然后,为了解决特征提取过程中可能出现语义信息丢失的问题,设计双注意力模块,将GhostNet的中层特征送入双注意力模块并与ASPP处理后的高层特征进行拼接,使网络获取更多语义特征,提高分割精度。最后,为验证本文所提方法的有效性,在磁瓦数据集上与DeepLabV3+、PSPNet、U-net等3种算法进行对比,实验结果表明,基于可分离ASPP和双注意力机制的磁瓦缺陷检测算法的具有较高的识别精度,平均交并比达到82.43%,类别平均像素准确率达到93.08%。该算法平衡了识别精度与参数量之间的关系,综合性能最优。

    Abstract:

    Aiming at the issue of low accuracy of existing visual defect detection algorithms for magnetic tile appearance recognition, an algorithm based on S-ASPP and dual attention mechanism is proposed. Firstly, in order to solve the problems of low detection efficiency and high hardware cost for algorithm deployment caused by large amount of model parameters and complex network structure, a lightweight GhostNet backbone network is proposed to extract low-level visual features. Secondly, the S-ASPP module is designed to introduce dense connections and depthwise separable convolutions, so as to reduce the amount of model parameters and improve the prediction speed of the model. Next, in order to solve the problem that semantic information may be lost during feature extraction, a dual-attention module is designed. The middle-level features of GhostNet are feed into the dual-attention module and concatinate with the high-level features after ASPP processing, so that the network can acquire more semantic features and improve the segmentation accuracy. Finally, in order to verify the effectiveness of the proposed method, the magnetic tile defect detection algorithm is compared with DeepLabV3+, PSPNet and U-NET algorithms on the magnetic tile data set. Experimental results show that the magnetic tile defect detection algorithm based on separable ASPP and dual attention mechanism has high recognition accuracy, and the average crossover ratio reaches 82.43%. The average pixel accuracy of the category reached 93.08%. The algorithm balances the relationship between the recognition accuracy and the number of parameters and has the best comprehensive performance.

    参考文献
    相似文献
    引证文献
引用本文

宁奉阁,石金进.基于S-ASPP和双注意力机制的磁瓦外观缺陷检测算法[J].电子测量技术,2023,46(2):146-153

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-03-11
  • 出版日期:
文章二维码