融合迁移学习的绝缘子缺陷分级检测方法
DOI:
CSTR:
作者:
作者单位:

华北电力大学自动化系 保定 071003

作者简介:

通讯作者:

中图分类号:

TP391;TP389

基金项目:

国家自然科学基金项目重点支持项目(U21A20486,61871182)资助


Integrating transfer learning for insulator defect grading detection
Author:
Affiliation:

North China Electric Power University, Department of automation,Baoding 071003, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对Faster R-CNN算法对复杂环境下的小样本绝缘子缺陷检测精度不高的问题,本文提出了一种融合迁移学习和主体局部的绝缘子缺陷分级检测方法。整个方法使用融合残差模块和特征金字塔结构的卷积神经网络作为骨干网络进行特征提取,用于适应不同尺度的缺陷目标,保留更多有效信息。首先使用迁移学习的方法改善对缺陷所在绝缘子主体的检测效果;然后对检测出的绝缘子主体进行自动裁剪来改善复杂背景对缺陷区域检测的影响,使得模型能够更有效地挖掘出缺陷特征;最后将裁剪后的缺陷绝缘子局部图像送入第二阶段进行训练,进一步提高模型准确率。通过对无人机航拍采集的绝缘子缺陷图像进行检测实验。结果表明,本文方法相较于Faster R-CNN基线模型平均精度提高了37.5%,达到了89.6%。在对自爆和破损检测上,精度分别提高了34.9%和60.2%。

    Abstract:

    This paper proposes a Main-Partial Transfer Region-CNN method for insulator defect detection to address the problem that the Faster R-CNN algorithm is not accurate in detecting insulator defects with small samples in complex environments. The whole method uses a convolutional neural network with a fused residual module and feature pyramid structure as the backbone network for feature extraction, which is used to adapt to different scales of defect targets and retain more valid information. Then, the detected insulator body is automatically cropped to improve the effectiveness of the complex background in the detection of the defective area, so that the model can be more effective in mining the defective features. The insulator defect images collected by UAV aerial photography are detected. The results show that the average accuracy of the method in this paper is improved by 37.5% compared with the Faster R-CNN baseline model, reaching 89.6%. The accuracy is improved by 34.9% and 60.2% on the detection of missing and damaged, respectively.

    参考文献
    相似文献
    引证文献
引用本文

翟永杰,胡哲东,白云山,孙圆圆.融合迁移学习的绝缘子缺陷分级检测方法[J].电子测量技术,2023,46(6):23-30

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-02-19
  • 出版日期:
文章二维码