基于改进粒子群算法的三维路径规划研究
DOI:
CSTR:
作者:
作者单位:

贵州大学大数据与信息工程学院 贵州 550025

作者简介:

通讯作者:

中图分类号:

TP301.6

基金项目:

国家自然科学基金(61865002)项目资助


Research on 3D path planning based on improved particle swarm optimization
Author:
Affiliation:

School of Big Data and Information Engineering, Guizhou University,Guizhou 550025,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对基本粒子群算法(PSO)收敛速度快、易早熟,容易陷入局部误区的问题,提出了粒子群-人工蜂群混合算法(PSO-ABC),并将提出的算法应用于无人机三维环境下的路径规划。该算法在改进粒子群算法的基础上,融合了人工蜂群算法来对无人机三维路径进行全局规划。首先引入非线型惯性权重和收缩因子,改进粒子的速度公式,然后利用人工蜂群算法的搜索算子对最优解再一次寻优,解决了粒子群算法因局部搜索能力较差陷入局部误区的问题。本文在三维环境下设置了两组实验,对比粒子群-人工蜂群混合算法与粒子群算法、人工蜂群算法的路径寻优性能。实验结果显示,本文提出的算法路径寻优能力有所提高,相比于粒子群算法,提高了6.1%,相比于人工蜂群算法提高了6.9%。

    Abstract:

    Aiming at the problems that the basic particle swarm optimization (PSO) Algorithm is fast in convergence and easy to premature maturity, and is prone to fall into local misunderstandings, this paper proposes a particle swarm-artificial bee swarm hybrid (PSO-ABC) algorithm, which is applied to path planning in the three-dimensional of UAV. Based on the improved PSO, the algorithm integrates the ABC algorithm to plan globally the three-dimensional path of UAV. First, the nonlinear inertia weight and shrinkage factor are introduced to improve the particle velocity formula, and then the search operator of the ABC is used to search for the optimal solution again, which solves the problem that the PSO algorithm falls into a local misunderstanding due to its poor local search ability. In this paper, two groups of experiments are set up in a three-dimensional environment to compare the path optimization performance of PSO-ABC algorithm, PSO and ABC algorithm. The experimental results show that the path optimization ability of the algorithm proposed in this paper has been improved, which is 6.1% higher than that of the PSO, and 6.9% higher than that of the ABC.

    参考文献
    相似文献
    引证文献
引用本文

杨教,陆安江,彭熙舜,刘红涛,龙纪安,黄骞瑶.基于改进粒子群算法的三维路径规划研究[J].电子测量技术,2023,46(12):92-97

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-01-31
  • 出版日期:
文章二维码