基于阴影增强和注意力机制的高光谱图像分类
DOI:
CSTR:
作者:
作者单位:

青岛科技大学自动化与电子工程学院 青岛 266061

作者简介:

通讯作者:

中图分类号:

TP751

基金项目:

国家自然科学基金(61971253)、山东省自然科学基金(ZR201910300033)项目资助


Hyperspectral image classification based on shadow enhancement and attention mechanism
Author:
Affiliation:

College of Automation & Electric Engineering, Qingdao University of Science & Technology,Qingdao 266061, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    基于深度学习网络的高光谱图像分类能够有效地提取图像中的特征信息,促进遥感图像中丰富信息的挖掘与利用。然而,现有方法性能仍然受限于阴影信息不能充分提取、特征不能有效利用。针对阴影区域信息提取,动态随机共振能够利用噪声增强信号,提高信息的表达能力;针对特征利用,在卷积神经网络中嵌入注意力机制,能够在其提取的高层特征的基础上,从空间维度和通道维度进一步提取融合,筛选出对当前任务目标更为关键的特征,提升网络分类性能。实验结果表明:通过在含有阴影区域的真实高光谱图像数据集Hydice上仿真,动态随机共振能够有效增强信号进而将分类精度从96.48%提升到97.14%,卷积注意块的加入使分类精度提升了0.408 4%。进一步与其他分类方法在Hydice、Indian Pines、Pavia University进行实验对比验证,本文方法分类精度分别达到了97.436 1%、99.219 5%和99.929 9%,对不同数据集的分类都具有良好的表现,相较于其他方法具有明显优势,证明了该方法的有效性和良好的分类性能,在高光谱图像分类领域具有广阔的应用前景。

    Abstract:

    Techniques based on deep learning for hyperspectral image classification can effectively extract features and promote the mining and utilization of the rich information. The performance of existing methods is still limited by the insufficient extraction of shadow information and the inefficient use of features. For information extraction in shadow areas, dynamic stochastic resonance can enhance the signal by using noise to improve the ability of information expression. For feature utilization, the attention mechanism is embedded in the convolutional neural network, which can further extract and fuse from the space dimension and channel dimension based on the high-level features extracted, screen out features more critical to the current task target, so as improving the classification performance. The experimental results show that dynamic stochastic resonance can effectively enhance signal, the classification accuracy on real world dataset Hydice is improved from 96.48% to 97.14%, and is improved by 0.408 4% with convolutional attention block added. Further verification by comparison with other methods, the classification accuracy on Hydice, Indian Pines and Pavia University reaches 97.436 1%, 99.219 5% and 99.929 9% respectively, which has obvious advantages. It is proved that the method is effective and has good classification performance, and has broad application prospects in the field of hyperspectral image classification.

    参考文献
    相似文献
    引证文献
引用本文

刘秋月,刘雪峰,孙绍华.基于阴影增强和注意力机制的高光谱图像分类[J].电子测量技术,2023,46(8):14-23

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-02-07
  • 出版日期:
文章二维码