基于深度学习的模糊指针式仪表矫正读数方法
DOI:
CSTR:
作者:
作者单位:

海军工程大学 武汉 430033

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:

国家优秀青年科学基金(42122025)、国家自然科学基金(41974005)项目资助


Correction reading method of fuzzy pointer instrument based on deep learning
Author:
Affiliation:

Naval University of Engineering, Wuhan 430033, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    变电站户外巡检任务中,由于大风,大雾,路面不平等复杂环境影响,巡检机器人容易出现抖动和视角偏差,导致所获取的仪表图片出现模糊,倾斜等问题,难以保证指针式仪表识别读数的准确性。为解决此问题,结合YOLOX目标检测,DeblurGAN-v2图像增强,DeepLabV3+语义分割神经网络算法,研究了模糊指针式仪表矫正读数识别方法。首先改进YOLOX网络实现仪表表盘、指针区域和仪表文字信息提取,并获取仪表参数,其次增强DeblurGAN-v2网络的特征提取能力,去除图像模糊影响,然后使用DeepLabV3+网络分割表盘和指针。仪表图像矫正过程采用透视变换和文本矩形轮廓矫正实现仪表高精度矫正。实验证明,该方法在检测任务中更能适应复杂环境影响,检测准确率高达9755%,满足工业上自动化检测要求。

    Abstract:

    In the outdoor inspection task of substation, the robot is vulnerable to the complex environment of outdoor wind, fog and uneven road surface. It is prone to jitter and angle deviation, resulting in blurred photos, instrument tilt and other problems, and it is difficult to ensure the accuracy of the identification reading of the pointer instrument. In order to solve this problem, combined with YOLOX target detection, DeblurGAN-v2 image enhancement, DeepLabV3+ semantic segmentation neural network algorithm, a fuzzy pointer meter reading correction and recognition method is proposed. Firstly, the YOLOX network is improved to extract the instrument panel, pointer area and instrument text information, and obtain the instrument parameters. Secondly, enhance the feature extraction ability of DeblurGAN-v2 network to remove the fuzzy influence in the image, then use deeplabv3+ network to divide the dial and pointer. In the aspect of image correction, perspective change and text rectangle correction are used to achieve high-precision correction of the instrument.Experiments show that this method can more effectively solve the impact of complex environment in the detection task, and the detection accuracy is as high as 97.55%, which meets the requirements of automatic detection in industry.

    参考文献
    相似文献
    引证文献
引用本文

侯卓成,欧阳华,胡鑫,尹洋.基于深度学习的模糊指针式仪表矫正读数方法[J].电子测量技术,2023,46(9):158-165

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-02-05
  • 出版日期:
文章二维码