光伏电池电致发光偏振图像融合与缺陷检测
DOI:
CSTR:
作者:
作者单位:

1.安徽建筑大学机械与电气工程学院 合肥 230601;2.安徽建筑大学建筑机械故障诊断与预警重点实验室 合肥 230601;3.偏振光成像探测技术安徽省重点实验室 合肥 230031;4.工程机械智能制造安徽省重点实验室 合肥 230601

作者简介:

通讯作者:

中图分类号:

TP391.9 O436

基金项目:

安徽省自然科学基金(2008085UD09)、安徽省教育厅高校研究生科学研究项目(YJS20210512)、安徽省教育厅高校自然科学重点项目(KJ2020A0487、GXXT-2021-010).


Photovoltaic cell electroluminescence polarization image fusion and defect detection
Author:
Affiliation:

1.School of Mechanical and Electrical Engineering, Anhui Jianzhu University, Hefei 230601, China; 2.Key Laboratory of Construction Machinery Fault Diagnosis and Early Warning Technology, Anhui Jianzhu University, Hefei 230601, China; 3.Key Laboratory of Polarization Imaging Detection Technology in Anhui Province, Hefei 230031, China; 4.Key Laboratory of Intelligent Manufacturing of Construction Machinery, Hefei 230601, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对电致发光图像边缘模糊、纹理不清晰造成光伏电池缺陷难以定量化评估问题,提出一种基于电致发光偏振图像融合的晶硅光伏电池缺陷检测方法。首先,在分析晶硅光伏电池结构的基础上给出电致发光偏振成像的基本原理。然后,利用拉普拉斯金字塔对获取的红外光强图像与偏振度图像进行分解、引导滤波对高频细节成分进行增强,通过区域能量最大、区域能量加权平均规则对高低频部分进行融合。最后搭建短波红外偏振检测平台开展晶硅光伏电池缺陷检测实验。结果表明,偏振成像可以凸显光伏电池缺陷图像的轮廓边缘和纹理细节,融合图像 中光伏电池缺陷特征更加突出,信息熵、标准差等客观评价指标显著提高,验证了方法的有效性。

    Abstract:

    The edge of electroluminescence image is fuzzy and the texture is not clear, which makes it difficult to quantitatively evaluate the defects of crystalline silicon photovoltaic cell. In order to solve this problem, a defect detection method based on electroluminescence polarization image fusion is proposed. First, based on the analysis of the crystalline silicon photovoltaic cell structure, the electroluminescence polarization imaging mechanism was introduced. Then, the Laplacian pyramid was used to decompose the obtained infrared intensity images and polarization images, and guide filter was used to enhance the high-frequency components. The high and low frequency parts were fused by the rule of regional energy maximum and regional energy weighted average. Finally, a short wave infrared polarization detection platform was established for photovoltaic cell inspection. The results show that polarization imaging can highlight the contour edges and texture detail of the photovoltaic cell defect image. The photovoltaic cell defect features in the fusion image are more prominent. The objective evaluation index such as information entropy and standard deviation are significantly improved, which verifies the effectiveness of the proposed method.

    参考文献
    相似文献
    引证文献
引用本文

汪方斌,张彦福,王 峰,朱达荣.光伏电池电致发光偏振图像融合与缺陷检测[J].电子测量技术,2022,45(19):143-149

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-03-29
  • 出版日期:
文章二维码