一种基于CenterNet的多朝向建筑物检测方法
DOI:
CSTR:
作者:
作者单位:

南京航空航天大学自动化学院 南京 211106

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:


A multi-orientation building detection method based on CenterNet
Author:
Affiliation:

College of Automation Engineering, Nanjing University of Aeronautics and Astronautics,Nanjing 211106, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    航拍图像中的建筑物分布往往是朝向多样的。基于传统卷积神经网络的目标检测算法多以水平锚框作为检测框,在检测多朝向分布的建筑物场景下准确率较低。为此本文提出一种基于CenterNet神经网络的目标检测算法,在CenterNet模型基础上添加角度预测分支,将朝向角度信息融入网络中。针对CenterNet模型在特征提取阶段提取到的建筑物角度特征较少问题,采用非对称卷积替代原先的3×3卷积,加强神经网络对于旋转目标角度信息的特征提取能力,并通过改进损失函数降低角度周期性问题对目标检测的影响。改进后的网络可以更加精准的检测出多朝向分布的建筑物。在本文构建的数据集上进行了实验测试,相同环境下网络改进前后建筑物整体检测准确率提升52%,其中10°~80°以及100°~170°范围内大朝向变化建筑物检测准确率提升了74%。0°~10°、80°~100°以及170°~180°范围内小朝向变化建筑物检测准确率提升了31%,有效提高了多朝向建筑物检测的准确度。

    Abstract:

    Buildings in aerial images often have multiple orientations. The target detection algorithm based on the traditional convolutional neural network mostly uses the horizontal anchor frame as the detection frame, which has a low accuracy in detecting the building scene with multi orientation distribution. Therefore, this paper proposes a target detection algorithm based on CenterNet neural network, adds angle prediction branch on the basis of CenterNet model, and integrates the orientation angle information into the network. Aiming at the problem that few building angle features are extracted in the feature extraction stage of CenterNet model, asymmetric convolution is used to replace the original 3×3 convolution to enhance the feature extraction ability of neural network for rotating target angle information, and reduce the impact of angle periodicity on target detection by improving the loss function. The improved network can more accurately detect buildings with multi orientation distribution. In this paper, experimental tests are carried out on the data set built by ourselves. Under the same environment, the overall average precision is improved by 5.2% before and after the network improvement,including 74% for buildings with large orientation changes within the range of 10°~80° and 100°~170°. The average precision of buildings with small orientation changes within the range of 0°~10°, 80°~100° and 170°~180° has increased by 31%, effectively improving the average precision of buildings with multiple orientations.

    参考文献
    相似文献
    引证文献
引用本文

顾东泽,王敬东,姜宜君,廖元晖.一种基于CenterNet的多朝向建筑物检测方法[J].电子测量技术,2023,46(10):150-154

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-01-09
  • 出版日期:
文章二维码