基于改进YOLOX的钢材表面缺陷检测算法
DOI:
CSTR:
作者:
作者单位:

1.重庆科技学院智能技术与工程学院 重庆 401331; 2.重庆大学微电子与通信工程学院 重庆 400044

作者简介:

通讯作者:

中图分类号:

TP391.41

基金项目:

重庆市教委科学技术研究项目(KJQN202001523)、重庆科技学院青年科学基金(CKRC2019042)、重庆科技学院研究生科创项目(YKJCX2120816)资助


Steel surface defect detection algorithm based on improved YOLOX
Author:
Affiliation:

1.School of Intelligent Technology and Engineering, Chongqing University of Science and Technology,Chongqing 401331, China; 2.School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对工业生产中钢材表面背景复杂导致缺陷检测精度低的问题,本文提出一种基于改进YOLOX的钢材表面缺陷检测算法。首先,引入了Swin Transformer模块来捕获缺陷钢材表面区域全局上下文信息并提取更多差异化特征;其次,采用加权双向特征金字塔网络(BiFPN),能够方便、快速的进行跨尺度特征融合;最后,对原始目标定位损失函数进行改进,建立了一种融合边界框中心位置的CIoU损失函数从而实现目标框高精度定位。实验表明,算法在NEU-DET数据集上的mAP为80.7%,检测精度相较于原始YOLOX-S网络提高了6.2%,同时也明显高于一些其他主流算法,具有较高的准确率和实用性。

    Abstract:

    Aiming at the problem of low defect detection accuracy caused by complex steel surface background in industrial production, this paper proposes a steel surface defect detection algorithm based on improved YOLOX. First, the Swin Transformer module is introduced to capture the global context information of the surface area of the defective steel and extract more differentiated features. Secondly, the weighted bidirectional feature pyramid network (BiFPN) is used to facilitate cross-scale feature fusion. Finally, we improved the original target localization loss function and established a CIoU loss function that fuses the center position of the bounding box to achieve high-precision localization of the target frame. Experiments showed that the mAP of our algorithm on the NEU-DET dataset is 80.7%, which is 6.2% higher than the original YOLOX-S network, and it is also significantly higher than some other mainstream algorithms, with high accuracy and practicality.

    参考文献
    相似文献
    引证文献
引用本文

熊聪,于安宁,高兴华,原森浩,曾孝平.基于改进YOLOX的钢材表面缺陷检测算法[J].电子测量技术,2023,46(9):151-157

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-02-05
  • 出版日期:
文章二维码