基于ISSA-BP神经网络的滑坡区输电铁塔状态预测模型
DOI:
CSTR:
作者:
作者单位:

1.三峡大学湖北省输电线路工程技术研究中心 宜昌 443002; 2. 三峡大学电气与新能源学院 宜昌 443002; 3.云南省水利水电勘测设计研究院 昆明 650051

作者简介:

通讯作者:

中图分类号:

TP183;TM753

基金项目:

国家自然科学基金(52079070)项目资助


State prediction model of transmission tower in landslide area based on ISSA-BP neural network
Author:
Affiliation:

1.Hubei Provincial Engineering Technology Research Center for Power Transmission Line, China Three Gorges University, Yichang 443002, China; 2.College of Electrical and New Energy, China Three Gorges University, Yichang 443002, China; 3.Yunnan Institute of Water & Hydropower Engineering Investigation, Design and Research, Kunming 650051, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    滑坡区输电铁塔基础发生位移时,会导致铁塔的最大位移及杆件所受最大应力发生变化,建立铁塔状态预测模型可得到铁塔的最大位移及杆件所受最大应力变化趋势,进而预防灾害事故的发生。提出一种改进麻雀搜索算法优化BP神经网络的预测模型,首先利用Sin混沌序列与步长因子动态调整策略对麻雀搜索算法进行优化,其次用优化后的模型对BP神经网络的权值及阈值进行参数寻优,得到预测模型。将铁塔基础在XYZ方向的位移值作为预测模型的输入量,得到铁塔最大位移值及铁塔杆件最大应力的预测值。本预测模型较BP神经网络模型相比,方根误差RSME值最高下降了63.4%,平均相对误差MAPE值最高下降了60.4%,绝对值平均绝对误差MAE值最高下降了62.6%,同时本文预测模型预测值符合真实值的变化趋势,综上本预测模型能较准确地预测输电铁塔运行状态,为其安全运行提供有力保障。

    Abstract:

    When the transmission tower foundation in landslide area is displaced, the maximum displacement of the tower and the maximum stress of the rod will change. The state prediction model of the tower can be established to obtain the maximum displacement of the tower and the maximum stress of the rod, so as to prevent the occurrence of disaster accidents. Proposes an improved sparrow search algorithm to optimize the prediction model of BP neural network. Firstly, Sin chaotic sequence and the dynamic adjustment strategy of step factor are used to optimize the sparrow search algorithm. Secondly, the optimized model is used to optimize the weights and thresholds of BP neural network to obtain the prediction model. The displacement value of the tower foundation in the direction XYZ is taken as the input of the prediction model, and the maximum displacement value of the tower and the predicted maximum stress value of the tower members are obtained. Compared with the model of BP neural network, the root error RSME value decreased by 63.4%, the average relative error MAPE value decreased by 60.4%, and the absolute mean absolute error MAE value decreased by 62.6%. At the same time, the predicted value of the prediction model in this paper was in line with the changing trend of the real value. In conclusion, the prediction model can accurately predict the operation state of the transmission tower and provide strong guarantee for its safe operation.

    参考文献
    相似文献
    引证文献
引用本文

李梦源,董瑞科,王彦海,周冬阳,邹梦健.基于ISSA-BP神经网络的滑坡区输电铁塔状态预测模型[J].电子测量技术,2023,46(11):74-82

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-02-05
  • 出版日期:
文章二维码