基于核熵成分分析的工业过程多类型故障诊断
DOI:
CSTR:
作者:
作者单位:

沈阳化工大学信息工程学院 沈阳 110142

作者简介:

通讯作者:

中图分类号:

TQ015

基金项目:

国家自然科学基金(62273242,61673279)项目资助


Multi-type fault diagnosis of industrial process based on KECA
Author:
Affiliation:

College of Information Engineering,Shenyang University of Chemical Technology,Shenyang 110142,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    核熵成分分析(KECA)特征提取过程中只保留了数据的最大瑞丽熵(Renyi)信息,没有充分利用数据的类别信息。由于监督学习算法线性判别分析(LDA)能够有效提取特征中的类别信息,因此提出KECALDA(KEDA)的特征提取方法。首先KECA依据最小Renyi熵损失策略对数据进行维数约简;然后在KECA特征空间使用LDA算法获取具有判别信息的低维特征并输入到支持向量机(SVM)分类器中,利用天牛须优化算法(BAS)得到最佳性能的SVM分类器,从而建立故障诊断模型。将KEDABASSVM方法应用于田纳西伊斯曼化工过程(TE)进行仿真实验,结果表明:当采用基于距离测度的矩阵相似性优化确定KEDA中所选用的径向基函数(RBF)核参数时,相比KECA和LDA算法,KEDA特征提取后多类型故障诊断准确率达到99.7%,验证了KEDA-BAS-SVM在多类型故障诊断领域的优越性。

    Abstract:

    The kernel entropy component analysis(KECA) feature extraction process only retains the maximum Renyi entropy information of the data, but does not fully utilize the category information of the data. As a supervised learning algorithm, linear discriminant analysis(LDA)can effectively extract category information in features. Therefore, a feature extraction method of KECA-LDA (KEDA) was proposed. Firstly, KECA reduced the dimension of the data according to the minimum Renyi entropy loss strategy. Then, the LDA algorithm was used in the KECA feature space to obtain low-dimensional features with discriminative information and input them into the support vector machine(SVM)classifier. The best performance SVM was obtained by beetle antennae search(BAS)and to build a fault diagnosis model. The KEDA-BAS-SVM method was applied to the Tennessee eastman(TE) for simulation experiments. The results showed that When the matrix similarity optimization based on distance measure was used to determine that the kernel parameter of RBF selected in KECA, compared with the KECA and LDA algorithms, after using KEDA feature extraction, the accuracy of multi-type fault diagnosis reached 99.7%, which verified the superiority of KEDA-BAS-SVM in the field of multi-type fault diagnosis.

    参考文献
    相似文献
    引证文献
引用本文

李榕,申志,李元.基于核熵成分分析的工业过程多类型故障诊断[J].电子测量技术,2023,46(10):40-45

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-01-09
  • 出版日期:
文章二维码