基于注意力机制和残差深度分离卷积的RUL预测方法
DOI:
CSTR:
作者:
作者单位:

1.陆军工程大学石家庄校区 石家庄 050003; 2.陆军工程大学军械士官学校 武汉 430000

作者简介:

通讯作者:

中图分类号:

TH17

基金项目:


Prediction method of remaining useful life based on attention mechanism and residual depthwise separation convolution
Author:
Affiliation:

1.Shijiazhuang Campus of Army Engineering University,Shijiazhuang 050003, China; 2.Wuhan Non-Commissioned Officer School of Army Engineering University,Wuhan 430000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    传统机械设备剩余使用寿命(RUL)预测方法需进行多源数据融合、建立健康指标等人工干预过程,预测精度受限于健康指标对设备退化过程的表征能力。为实现端对端的RUL预测并提升预测精度,提出了一种基于注意力机制和残差深度分离卷积网络相结合的RUL方法,并采用CMAPSS航空发动机仿真数据集检验方法的有效性。采用滑动窗从发动机多源状态参数中截取多元序列作为表征发动机状态的样本,并基于一维可分离卷积网络建立RUL预测模型,为提升模型的预测精度在网络中引入了注意力机制和残差网络。最终所提方法对CMAPSS 4个测试集的均方根误差均值分别为1128、1412、1157和1561,且对发动机在运行期间的RUL预测也具有良好的泛化能力。通过与多种RUL预测方法的结果相比较,表明所提方法对4个测试集的整体预测精度均较高,是一种有效的机械设备RUL预测方法,并可用于设备的早期故障预警。

    Abstract:

    Traditional methods for remaining useful life(RUL)prediction of mechanical equipment require manual intervention processes such as multisource data fusion and establishment of health indicators, and the prediction accuracy is limited by the ability of health indicators to characterize the degradation process of the equipment. To achieve endtoend RUL prediction and improve the prediction accuracy, a RUL method based on a combination of attention mechanism and residual depth separation convolutional network is proposed, and the effectiveness of the method is tested by using the CMAPSS aeroengine simulation data set. A sliding window is used to intercept multivariate sequences from the engine multisource state parameters as samples to characterize the engine state, and a RUL prediction model is built based on a onedimensional separable convolutional network, and an attention mechanism and residual network are introduced into the network to improve the prediction accuracy of the model. The final mean root mean square error values of the proposed method for the four test sets of C-MAPSS are 11.28, 14.12, 11.57 and 15.61, respectively, and it also has good generalization capability for RUL prediction during engine operation. The comparison results with various RUL prediction methods show that the overall prediction accuracy of the proposed method is high for all four test sets, indicating that the method is an effective RUL prediction method for mechanical equipment and can be used for early fault warning of equipment.

    参考文献
    相似文献
    引证文献
引用本文

兰杰,李志宁,李宁,吕建刚.基于注意力机制和残差深度分离卷积的RUL预测方法[J].电子测量技术,2023,46(15):149-157

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-01-08
  • 出版日期:
文章二维码