基于数据去噪和CNN-BiGRU的SO2排放预测
DOI:
CSTR:
作者:
作者单位:

青岛科技大学自动化与电子工程学院 青岛 266061

作者简介:

通讯作者:

中图分类号:

X701.3

基金项目:

山东省重点研发项目(重大科技创新工程)(2020CXGC011402)资助


SO2 emission prediction based on data denoising and CNN-BiGRU
Author:
Affiliation:

School of Automation & Electronic Engineering, Qingdao University of Science & Technology,Qingdao 266061, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    石灰石-石膏湿法烟气脱硫(WFGD)是火电厂烟气脱硫的主要方法,对大气环境保护起到重要作用,但也会出现腐蚀、结垢等问题影响运行效率。为了优化湿法脱硫系统的运行,采用数据驱动方法对SO2烟气排放进行动态建模。首先利用完全自适应噪声集合经验模态分解(CEEMDAN)对SO2排放数据进行分解,得到若干个本征模态分量(IMFs)。使用小波阈值去噪对含有噪声的本征模态分量进行去噪处理,得到纯净分量。然后设计了卷积神经网络(CNN)和双向门控循环单元(BiGRU)相结合的深度学习模型对SO2排放进行预测。在对比了对分量分别预测后进行重构和将分量重构后进行预测两种方案后,发现前者的均方根误差和平均绝对误差比后者分别降低了0.135 7和0.284 3。基于第1种方案与其他基准模型进行了对比实验,所提模型的均方根误差和平均绝对误差分别为0.699 6和0.355 3,均为最低。结果表明所提模型在对SO2排放浓度预测方面有显著优势。

    Abstract:

    Limestone-gypsum wet flue gas desulfurization (WFGD) is the main method of flue gas desulfurization in thermal power plants and plays an important role in atmospheric environmental protection, but it can also suffer from corrosion and fouling problems that affect the operational efficiency. In order to optimize the operation of the wet WFGD system, a data-driven approach is used to model the SO2 flue gas emissions dynamically. Firstly, the SO2 emission data are decomposed using the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) to obtain several intrinsic mode functions (IMFs). The intrinsic mode functions containing noise are denoised using wavelet threshold denoising to obtain the pure components. Then a deep learning model combining convolutional neural network (CNN) and bi-directional gated recurrent unit (BiGRU) is designed for SO2 emission prediction. After comparing the two schemes of predicting the components separately and then reconstructing them and reconstructing the components and then predicting them, it is found that the root mean square error and the mean absolute error of the former are reduced by 0.135 7 and 0.284 3, respectively, compared with the latter. Experiments are conducted based on the first scheme in comparison with other benchmark models, the root mean square error and the mean absolute error of the proposed model are 0.699 6 and 0.355 3, which are the lowest. The results indicate that the proposed model has significant advantages in predicting SO2 emission concentration.

    参考文献
    相似文献
    引证文献
引用本文

孙坤,尹晓红.基于数据去噪和CNN-BiGRU的SO2排放预测[J].电子测量技术,2023,46(13):66-72

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-01-22
  • 出版日期:
文章二维码