基于迁移学习的肠衣质量检测
DOI:
CSTR:
作者:
作者单位:

1.河北工业大学人工智能与数据科学学院 天津 300400; 2.内蒙古秋实生物有限公司 乌兰察布 012000

作者简介:

通讯作者:

中图分类号:

TP277;TP206+.3

基金项目:


Migration learning-based quality inspection of sausage casing
Author:
Affiliation:

1.School of Artificial Intelligence and Data Science, Hebei University of Technology,Tianjin 300400, China; 2.Inner Mongolia Qiushi Biological Co., Ltd., Ulanqab 012000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了对生产后的肠衣准确快速的分类,研究了一种基于ResNet50模型的迁移学习网络模型。通过构建神经网络模型,以及从合作工厂获得肠衣样本,并按实际质量制作成A,B,C,D四个等级的数据集总共2 000张。在ResNet50模型的基础上设计全新的全连接层。并按7∶1的比例分成训练集和测试集。实验可知,迁移学习的准确率为99%远好于普通深度学习模型的准确率94%,准确率有明显的提高。最后将训练好的模型利用Python图形工具pyqt制作成用户界面,便于实际应用。该研究建立的基于迁移学习的肠衣质量检测系统,可实现对肠衣质量快速准确的分类,减轻了人力成本,为以后肠衣质量检测提供了依据。

    Abstract:

    A migration learning network model based on the ResNet50 model was studied for accurate and fast classification of the manufactured casings. By constructing a neural network model as well as obtaining sausage casing samples from a cooperative factory and making a total of 2 000 data sets of four grades A, B, C and D according to the actual quality. A new fully connected layer is designed based on the ResNet50 model. And divided into training set and test set in the ratio of 7∶1. Experimentally, it can be seen that the accuracy of migration learning is 99% far better than the accuracy of 94% of the ordinary deep learning model, and the accuracy is significantly improved. Finally, the trained model is made into a user interface using pyqt, a Python graphical tool, for practical application. The migration learning-based intestinal coating quality detection system established in this study can achieve fast and accurate classification of intestinal coating quality, reduce labor cost, and provide a basis for future intestinal coating quality detection.

    参考文献
    相似文献
    引证文献
引用本文

丁庆松,孙昊,李强,刘明和,徐悦轩.基于迁移学习的肠衣质量检测[J].电子测量技术,2023,46(11):185-192

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-02-05
  • 出版日期:
文章二维码