改进YOLOv5的路面缺陷快速检测方法研究
DOI:
CSTR:
作者:
作者单位:

湖北汽车工业学院机械工程学院 十堰 442002

作者简介:

通讯作者:

中图分类号:

TP391;U418

基金项目:

国家自然科学基金(51675167) 、湖北省重点研发计划项目(2021BAA056) 、 湖北省高等学校优秀中青年科技创新团队计划项目(T2020018)、湖北省自然科学基金(2020CFB755)、湖北省教育厅科研项目(Q20191801)资助


Research on rapid detection method of pavement defects by improving YOLOv5
Author:
Affiliation:

School of Mechanical Engineering, Hubei University of Automotive Technology, Shiyan 442002, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了实现路面缺陷的智能快速化检测,对深度学习目标检测算法YOLOv5进行改进,得到的3种检测模型(YOLOv5A,YOLOv5C,YOLOv5AC)均可采用视频检测的方式对路面5类缺陷进行快速检测。采用智能手机和数码相机采集路面缺陷图像并制作数据集,在满足视频检测的需求下,使用Kmeans算法和1IoU作为样本距离重新聚类anchor,得到更优的锚框参数;在网络多个结构中引入CBAM注意力机制,增强模型的特征提取能力。实验结果表明,YOLOv5C算法在训练集上的平均精度达到918%,相较于原模型提高1%;YOLOv5A算法在验证集上的平均精度达到927%,相较于原模型提高17%;在实际检测效果上,YOLOv5AC算法在裂缝、破碎板和坑洞的识别准确度上达到89%、62%、90%,相较于原模型提高了45%、4%、5%,且模型的检测速度达到40 FPS。YOLOv5AC算法具有较高的检测精度和识别速度,一定条件下可以满足在道路缺陷检测中的智能化实时检测需求。

    Abstract:

    In order to achieve intelligent rapid detection of pavement defects, the deep learning object detection algorithm YOLOv5 is improved, and the three detection models (YOLOv5A, YOLOv5C, YOLOv5AC)can be quickly detected by video detection. Using smart phones and digital cameras to collect road defect images and make data sets, to meet the needs of video detection, the use of Kmeans algorithm and 1IoU as sample distance recluster anchor, to obtain better anchor frame parameters; the introduction of CBAM attention mechanism in multiple structures of the network, enhance the feature extraction ability of the model. The experimental results show that the average accuracy of the YOLOv5C algorithm on the training set reaches 918%, which is 1% higher than that of the original model. The average accuracy of the YOLOv5A algorithm on the verification set reaches 927%, which is 17% higher than that of the original model. In terms of actual detection effect, the YOLOv5AC algorithm achieves 89%, 62%, and 90% in the identification accuracy of cracks, broken plates and pits, which is 45%, 4%, and 5% higher than the original model. And the detection speed of the model reaches 40 FPS. YOLOv5AC algorithm has high detection accuracy and recognition speed, and can meet the intelligent realtime detection requirements in road defect detection under certain conditions.

    参考文献
    相似文献
    引证文献
引用本文

陈建瑜,邹春龙,王生怀,夏力,陈哲.改进YOLOv5的路面缺陷快速检测方法研究[J].电子测量技术,2023,46(10):129-135

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-01-09
  • 出版日期:
文章二维码