改进型CenterNet的高铁无砟轨道板表面裂缝检测算法
DOI:
CSTR:
作者:
作者单位:

华东交通大学信息工程学院 南昌 330013

作者简介:

通讯作者:

中图分类号:

TP391.4

基金项目:

国家自然科学基金(62262021)、江西省教育厅科学技术研究重点项目(GJJ200603)资助


Improved CenterNet algorithm for detecting surface cracks in ballastless track slabs of high-speed rail
Author:
Affiliation:

School of Information Engineering, East China Jiaotong University,Nanchang 330013,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统的高铁无砟轨道板表面裂缝检测方法存在检测精度低、速度慢的问题,提出一种改进型CenterNet的高铁无砟轨道板表面裂缝检测算法。该算法在编解码网络之间加入空洞空间金字塔池化模块(ASPP),以此扩大特征图的感受野,充分提取不同尺度的上下文信息;然后在特征提取网络中加入多光谱通道注意力模块(MCA),使网络可以更好学习每个通道的权重,捕获图像丰富的输入特征信息;最后使用αIoU损失函数来提高边界框预测的准确度。实验结果表明,本算法平均检测精度(mAP)达到8412%,相比传统算法平均检测精度提升了337%,对于轨道板表面裂缝具有较好的检测效果。

    Abstract:

    Aiming at the problems of low detection accuracy and slow speed of the traditional method for detecting surface cracks on ballastless track slabs of high-speed railways, an improved CenterNetbased algorithm for detecting surface cracks on track slabs is proposed. The algorithm adds atrous space pyramid pooling module (ASPP) between the codec network as a way to expand the perceptual field of the feature map and fully extract the contextual information at different scales. Then adds a multispectral channel attention module (MCA) to the feature extraction network so that the network can better learn the weights of each channel and capture the image rich input feature information. Finally, the αIoU loss function is used to improve the accuracy of bounding box prediction. The experimental results show that the mean average precision(mAP) of the proposed algorithm reaches 8412%, which is 337% higher than that of the traditional algorithm, and it has a good detection effect on the surface cracks of the track plate.

    参考文献
    相似文献
    引证文献
引用本文

吴铭权,罗晖,李琛彪,李佳敏,蔡联明.改进型CenterNet的高铁无砟轨道板表面裂缝检测算法[J].电子测量技术,2023,46(10):123-128

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-01-09
  • 出版日期:
文章二维码