深浅层特征结合的自监督立体匹配
DOI:
CSTR:
作者:
作者单位:

上海电力大学电子与信息工程学院 上海 201306

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:

国家自然科学基金(62105196)项目资助


Self-supervised stereo matching combining deep features and shallow features
Author:
Affiliation:

College of Electronical and Information Engineering, Shanghai University of Electric Power,Shanghai 201306, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对现有的立体匹配算法物体细节部分估计效果较差、有监督算法依赖大量真实视差图等问题,本文提出了一种深浅层特征结合的自监督立体匹配算法。该算法在特征提取网络中嵌入通道注意力机制来提取图片的浅层和更具表征能力的深层特征。基于深层特征构建代价体积预测初始视差图,并用浅层特征指导初始视差图进行优化。此外在损失函数部分在左右视差一致性损失的基础上本文提出左右特征一致性损失,加强浅层特征信息对视差的约束作用,提高算法的鲁棒性。本文在KITTI 2015数据集上训练评估,并应用到拍摄的实际场景中。实验结果表明,本文提出的方法与其他算法相比能获得更好的效果,特别是在视差突然变化的细节区域。

    Abstract:

    Aiming at the poor estimation of the existing stereo matching algorithms on the details of objects and the fact that supervised algorithms relying on a large number of groundtruth disparity maps, this paper proposes a self-supervised stereo matching algorithm combining deep and shallow features. The algorithm embeds Efficient Channel Attention in the feature extraction network to extract shallow and more expressive deep features of the picture. The cost volume predicting initial disparities are constructed based on the deep features, and the shallow features are used to guide the optimization of the initial disparities. In addition, in the loss function section, on the basis of the left and right disparity consistency loss, this paper proposes the left and right feature consistency loss, which strengthens the constraint effect of shallow feature information on disparity maps and improves the robustness of the algorithm. This article trains and evaluates on the KITTI 2015 dataset and applies it to the actual scenes taken by us. Experimental results show that the proposed method can achieve better results than other algorithms, especially in the details where the disparity changes suddenly.

    参考文献
    相似文献
    引证文献
引用本文

葛兰,贾振堂.深浅层特征结合的自监督立体匹配[J].电子测量技术,2023,46(12):143-149

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-01-31
  • 出版日期:
文章二维码