基于混合神经网络和注意力机制的卒中后抑郁早期筛查分类方法研究
DOI:
CSTR:
作者:
作者单位:

1.河北工业大学省部共建电工装备可靠性与智能化国家重点实验室 天津 300130; 2.河北工业大学天津市生物电工与智能健康重点实验室 天津 300130; 3.天津市人民医院康复医学科 天津 300121

作者简介:

通讯作者:

中图分类号:

TN911

基金项目:

国家自然科学基金(51877068,81871469,51737003,52077056)、河北省自然科学基金(E2020202033)项目资助


Research on early screening and classification method of poststroke depression based on hybrid neural network and attention mechanism
Author:
Affiliation:

1.State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology,Tianjin 300130, China; 2.Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, Hebei University of Technology,Tianjin 300130,China; 3.Rehabilitation Medical Department, Tianjin Union Medical Center,Tianjin 300121,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    脑卒中后抑郁症(PSD)是卒中后常见的并发症之一,严重威胁着脑卒中患者的健康。目前PSD的诊断主要依据病人的临床表现及各种量表,这类方法存在一定的主观性。脑电图(EEG)结合深度学习技术有可能为PSD诊断提供客观标准。本研究采集28名脑卒中后无抑郁受试者(PSND)和38名脑卒中后轻度抑郁患者(PSMD)的EEG信号,提出了一种基于注意力机制的长短时记忆网络(LSTM)和卷积神经网络(EEGNet)特征融合的端到端的PSD诊断框架。采用LSTM模型来学习EEG信号在时序上的依赖关系,引入的注意力机制对LSTM模型中时域信息进行权重分配来提高有用信息的利用率,最终通过EEGNet模块来提取EEG信号中更具表征的深层特征。通过10折交叉验证得出准确度、精确度、召回率、F1-Score和Kappa系数,分别为95.90%、95.75%、96%、95.82%和91.60%。与基础的深度学习模型相比,本文的方法能保持稳定的模型性能,对PSD的诊断具有较高的准确性,为PSD的筛查和诊断提供了一定的参考。

    Abstract:

    Poststroke depression (PSD) is one of the common complications after stroke, which seriously affects the rehabilitation of stroke patients. At present, the diagnosis of PSD is mainly based on the clinical manifestations of patients with various scales, but this method has certain subjectivity. Electroencephalography (EEG) combined with deep learning techniques has the potential to provide objective criteria for the diagnosis of PSD. In this study, we collected EEG signals from 28 subjects without poststroke depression (PSND) and 38 subjects with poststroke mild depression (PSMD), and proposed an end-to-end PSD diagnostic framework, which combines long short-term memory (LSTM) based on attention mechanism with convolutional neural network (EEGNet). LSTM model is used to learn the time-series dependencies of the EEG signal. attention mechanism assigns weights to the time domain information to improve the utilization of useful information. Finally, EEGNet module is used to extract more representative deep features in the EEG signal. The results showed that the accuracy, precision, recall, F1-Score and Kappa coefficient obtained by 10-fold cross-validation were 95.90%, 95.75%, 96%, 95.82% and 91.60%. Compared with the basic deep learning model for EEG-based PSD classification, our method maintains stable model performance and has high accuracy for the diagnosis of PSD, which provides a certain reference for the screening and diagnosis of PSD.

    参考文献
    相似文献
    引证文献
引用本文

于洪丽,安丽佳,王春方,徐桂芝,郭磊.基于混合神经网络和注意力机制的卒中后抑郁早期筛查分类方法研究[J].电子测量技术,2023,46(12):178-186

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-01-31
  • 出版日期:
文章二维码