UWB与IMU融合的室内动态定位算法
DOI:
CSTR:
作者:
作者单位:

青岛大学自动化学院 青岛 266071

作者简介:

通讯作者:

中图分类号:

TN96

基金项目:

国家自然科学基金(61833001)项目资助


Indoor dynamic positioning algorithm fused with UWB and IMU
Author:
Affiliation:

School of Automation, Qingdao University,Qingdao 266071, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对超宽带(UWB)定位易受多种噪声和非视距(NLOS)的影响产生定位误差的问题,提出了一种基于UWB与惯性测量单元(IMU)融合的室内动态定位算法。该算法首先采用扩展卡尔曼滤波算法对基于到达角度(AOA)定位方法的位置信息进行滤波,并与IMU数据进行时间同步,通过相邻时刻UWB位置信息变化速度与IMU所测量标签运动速度对比,实现对NLOS数据的识别及补偿,从而降低NLOS对定位精度的影响;然后基于改进粒子滤波算法对融合后的数据进行最优估计,以抑制噪声的干扰,最终实现对标签的准确定位。实验结果表明,所提算法采用基于AOA的定位方法可以在保证定位精度的前提下节约硬件成本;与单一使用UWB传感器的定位方案相比,所提算法可根据IMU提供的先验信息有效降低UWB的定位误差,在非视距环境下具备较高可靠性;与基于扩展卡尔曼滤波和无迹卡尔曼滤波的融合算法相比,定位精度分别提高了656%和560%;与标准粒子滤波算法相比,所提算法基于改进的粒子滤波算法运行时间缩短了423%。

    Abstract:

    An indoor dynamic positioning algorithm based on UWB and inertial measurement unit (IMU) fusion is proposed to deal with the problem that ultra-wideband (UWB) positioning is susceptible to various noises and nonlineofsight (NLOS). The algorithm firstly uses the extended Kalman filtering algorithm to filter the position information based on the angle of arrival (AOA) positioning method, and synchronizes the time with IMU data. By comparing the change speed of UWB position information at adjacent times with the movement speed of tags measured by IMU, the algorithm realizes the recognition and compensation of NLOS data, thus reducing the impact of NLOS on positioning accuracy. Then the improved particle filtering algorithm is used to optimally estimate the fused data to suppress noise interference and finally achieve accurate label location. The experimental results show that the proposed algorithm using AOA based location method can save the hardware cost while ensuring the location accuracy. Compared with the positioning scheme using only UWB sensors, the proposed algorithm can effectively reduce the positioning error of UWB according to the prior information provided by IMU, and has high reliability in the nonline of sight environment. Contrary to the fusion algorithm based on extended Kalman filter and unscented Kalman filter, the positioning accuracy is improved by 656% and 560% respectively. In contrast to the standard particle filtering algorithm, the running time of the proposed algorithm based on the improved particle filtering algorithm is reduced by 423%.

    参考文献
    相似文献
    引证文献
引用本文

王鹏,侯忠生. UWB与IMU融合的室内动态定位算法[J].电子测量技术,2023,46(10):76-83

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-01-09
  • 出版日期:
文章二维码