基于CWT和CooAtten-Resnet的弧齿锥齿轮箱故障诊断方法研究
DOI:
CSTR:
作者:
作者单位:

1.中北大学机械工程学院 太原 030051; 2.中北大学系统辨识与诊断技术研究所 太原 030051

作者简介:

通讯作者:

中图分类号:

TH132.41

基金项目:


Research on fault diagnosis method of spiral bevel gear box based on CWT and CooAtten-Resnet
Author:
Affiliation:

1.School of Mechanical Engineering,North University of China,Taiyuan 030051,China; 2.System Identification and Diagnosis Technology Research Institute,North University of China,Taiyuan 030051,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    提出一种基于连续小波变换(CWT)和坐标注意机制残差网络(CooAtten-Resnet)的弧齿锥齿轮箱智能故障诊断方法。首先将振动信号重叠采样获得大量信号样本,将这些样本通过连续小波变换将振动信号转化为时频图,并以此构建不同故障下的时频数据集,同时通过人为添加噪声样本以验证噪声对此类诊断方法的影响;然后将时频图数据集用于CooAtten-Resnet训练;最后对故障进行分类并输出诊断结果。结果表明,该方法可以准确的识别弧齿锥齿轮箱故障,无人为添加噪声的情况诊断准确率可达100%,添加噪声后在无降噪处理的情况下准确率仍在93%以上。相较于其他方法,该方法的准确率更高,抗噪能力更强,网络收敛速度更快,诊断结果更稳定。

    Abstract:

    An intelligent fault diagnosis method for spiral bevel gear box based on continuous wavelet transform (CWT) and coordinate attention mechanism residual network (CooAtten-Resnet) is proposed. Firstly, a large number of signal samples are obtained by overlapping sampling of vibration signals. These samples are converted into time-frequency maps by continuous wavelet transform, and time-frequency data sets under different faults are constructed. At the same time, noise samples are added manually to verify the impact of noise on such diagnostic methods; Then the time-frequency map data set is used for CooAtten-Resnet training; Finally, the fault is classified and the diagnosis results are output. The results show that this method can accurately identify the fault of spiral bevel gear box, and the accuracy rate of diagnosis can reach 100% when no one adds noise, and the accuracy rate is still above 93% when no noise reduction is conducted after adding noise. Compared with other methods, this method has higher accuracy, stronger anti-noise ability, faster network convergence and more stable diagnosis results.

    参考文献
    相似文献
    引证文献
引用本文

张旭,许昕,潘宏侠,徐轟钊,原涛涛,王同.基于CWT和CooAtten-Resnet的弧齿锥齿轮箱故障诊断方法研究[J].电子测量技术,2023,46(3):182-189

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-02-26
  • 出版日期:
文章二维码