Grael脑电放大器与深度学习的手势实时识别研究
DOI:
CSTR:
作者:
作者单位:

1.河北大学电子信息工程学院 保定 071002; 2.河北大学河北省数字医疗工程重点实验室 保定 071002

作者简介:

通讯作者:

中图分类号:

TP391.41

基金项目:

河北省自然科学基金(F2021201002,202101005)、河北省教育厅重点项目(ZD2020146)、保定市科技局项目(1911Q001)资助


Real-time gesture recognition with Grael EEG amplifier and deep learning
Author:
Affiliation:

1.College of Electronic and Information Engineering, Hebei University,Baoding 071002, China; 2.Key Laboratory of Digital Medical Engineering of Hebei Province, Hebei University, Baoding 071002, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    手势识别是人机交互的关键。为了能够更好地实现脑电信号与肌电信号的融合,精准地识别人体的运动,本文建立了一套基于Grael脑电放大器的手势动作实时检测识别的研究系统。通过Grael脑电放大器和Curry8系统采集5个通道的8种不同手势的表面肌电信号(sEMG),并对采集到的sEMG信号进行滤波去噪、滑动窗口分割以及特征提取等预处理的操作;最后采用几种常用的分类器与卷积神经网络(CNN)对不同手势的sEMG信号进行实时分类识别。结果表明CNN的识别准确率最高,能达到92.98%;对每个手势动作进行30次实时识别检测,结果显示识别延迟大概在1~1.5 s,实时识别的精度可高达90%。该系统为将来研究脑电信号与肌电信号的融合提供了一个可行的方法,在人机交互方面展现了巨大的潜力和应用空间。

    Abstract:

    Gesture recognition is the key to human-computer interaction. In order to better realize the fusion of EEG and EMG signals and accurately recognize human motion, this paper established a research system of real-time gesture detection and recognition based on Grael EEG amplifier. The surface electromyography (sEMG) signals of eight different gestures from five channels were collected by Grael EEG amplifier and Curry8 system, and the collected sEMG signals were preprocessed by filtering and denoising, sliding window segmentation and feature extraction. Finally, several commonly used classifiers and convolutional neural network (CNN) are used to classify and recognize sEMG signals of different gestures in real time. The results show that the recognition accuracy of CNN is the highest, reaching 92.98%. After 30 times of real-time recognition and detection for each gesture, the results show that the recognition delay is about 1~1.5 s, and the accuracy of real-time recognition can be up to 90%. This system provides a feasible method to study the fusion of EEG and EMG signals in the future, and shows great potential and application space in human-computer interaction.

    参考文献
    相似文献
    引证文献
引用本文

刘晓光,张明进,王嘉威,梁铁,李俊,刘秀玲. Grael脑电放大器与深度学习的手势实时识别研究[J].电子测量技术,2023,46(8):7-13

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-02-07
  • 出版日期:
文章二维码