基于改进蝙蝠算法的微网群能量优化方法
DOI:
CSTR:
作者:
作者单位:

1.河南理工大学 焦作 454003; 2.河南省煤矿装备智能检测与控制重点实验室 焦作 454003

作者简介:

通讯作者:

中图分类号:

TM743

基金项目:

国家自然科学基金 (U1804143)、河南省重点研发与推广专项(科技攻关)(222102220034)资助


Energy optimization method of microgrid cluster based on improved bat algorithm
Author:
Affiliation:

1.Henan Polytechnic University,Jiaozuo 454003, China; 2.Henan Key Laboratory of Intelligent Detection and Control of Coal Mine Equipment,Jiaozuo 454003, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对微网群如何稳定运行以及最大程度减少网群运行成本等问题,进行了基于改进蝙蝠算法的微网群能量优化研究。系统以离网运行的两个交流微电网和一个直流微电网构成的微网群作为研究对象,构建包含集中储能系统的微网群架构,利用运行成本和环境影响成本为多目标函数建立优化调度模型,通过二元对比权定法将多目标函数转化为单目标函数,采用基于Tent映射与柯西变异的改进蝙蝠算法进行能量优化。结果表明,对比传统的微网群优化方法,该系统能量优化方法具有较好的系统运行稳定性,有效提高了系统经济效益,使得日运行综合成本降低了1463%。

    Abstract:

    Aiming at the problems of how to run the microgrid cluster stably and how to reduce the operation cost of the microgrid cluster to the greatest extent, the energy optimization of the microgrid cluster based on the improved bat algorithm was studied. The system takes the microgrid cluster composed of two AC microgrids and one DC microgrid operating off grid as the research object, constructs the microgrid cluster architecture including centralized energy storage system, establishes the optimal scheduling model using the operation cost and environmental impact cost as the multiobjective function, and transforms the multiobjective function into a single objective function through the binary comparison weighting method, The improved bat algorithm based on tent mapping and Cauchy variation is used for energy optimization. The results show that compared with the traditional microgrid cluster optimization method, the system energy optimization method has better system operation stability, effectively improves the economic efficiency of the system, and reduces the comprehensive daily operation cost by 14.63%.

    参考文献
    相似文献
    引证文献
引用本文

曾志辉,李雪强,尹路路,杨明.基于改进蝙蝠算法的微网群能量优化方法[J].电子测量技术,2023,46(10):53-60

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-01-09
  • 出版日期:
文章二维码