基于特征优选策略和DLSTMs-FCN优化的短期负荷预测
DOI:
CSTR:
作者:
作者单位:

四川大学电气工程学院 成都 610000

作者简介:

通讯作者:

中图分类号:

TM715

基金项目:

四川省科技计划资助项目(2021YFSY0051)、四川省科技厅国际/港澳台科技创新合作项目(2022YFH0018)资助


Short-term load forecasting model based on feature optimization strategy and DLSTMs-FCN
Author:
Affiliation:

School of Electrical Engineering, Sichuan University,Chengdu 610000,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对当前基于长短期记忆网络的短期负荷预测模型存在特征冗余、重要信息丢失等问题,提出一种基于特征优选策略和DLSTMsFCN并联优化结构的短期负荷预测方法。首先利用基于极限梯度提升的特征优选策略构造负荷预测模型中的输入特征最优集,减少冗余信息,加快模型拟合;而后利用DLSTMs提取负荷数据的时序特征,并辅以FCN的多维卷积运算及结构特征提取的高分辨率信息,增强对输入数据重要特征的学习和记忆,进而并联构成高效准确的短期负荷预测模型。实验结果表明,本文优化方法相较于ALSTMs和CNNLSTMs预测误差分别降低了6%和4%,预测误差波动分别降低了47%和48%。

    Abstract:

    The short-term load forecasting model using long short-term memory(LSTM) network has the problem of feature redundancy and loss of important information. In order to solve these problems, a shortterm load forecasting method based on feature selection strategy and DLSTMsFCN is proposed. Firstly, the feature optimization strategy based on extreme gradient boosting(Xgboost) is adopted to improve the feature redundancy problem of load prediction input. Secondly, DLSTMs are used to extract the time series features of load data, and the highresolution information is extracted through the multidimensional convolution operation of FCN and structural features. The purpose is to enhance the learning and memory of important features of input data, and then form an efficient and accurate shortterm load forecasting model in parallel. The experimental results show that compared with ALSTMs and CNNLSTMs, the prediction error of the optimization method in this paper decreases by 6% and 4% respectively, and the prediction error fluctuation decreases by 4.7% and 4.8% respectively.

    参考文献
    相似文献
    引证文献
引用本文

孟金鑫,黄山,印月.基于特征优选策略和DLSTMs-FCN优化的短期负荷预测[J].电子测量技术,2023,46(10):46-52

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-01-09
  • 出版日期:
文章二维码