基于Autoformer的滚动轴承剩余使用寿命预测
DOI:
CSTR:
作者:
作者单位:

大连理工大学机械工程学院 大连 116024

作者简介:

通讯作者:

中图分类号:

TP391.5

基金项目:

国家自然科学基金(51905074)、辽宁省自然科学基金(2019-KF-04-04)项目资助


Remaining useful life prediction of rolling bearing based on Autoformer
Author:
Affiliation:

School of Mechanical Engineering, Dalian University of Technology,Dalian 116024, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    滚动轴承剩余使用寿命(RUL)预测的数据驱动方法显示出了巨大的潜力,但仍有提升的空间。为此,提出了一种基于Autoformer模型的滚动轴承RUL预测方法。结合领域内的专家知识对滚动轴承原始信号进行人工特征提取并优化特征,利用Transformer类模型强大的多维特征提取能力挖掘输入特征与RUL之间的复杂映射关系。针对滚动轴承振动信号的周期性特点采用Autoformer模型将时间序列进行分解对趋势项和周期项分别处理。实验结果表明,所提出的预测方法在PHM2012数据集上的表现相比于其它文献的方法,平均得分分别提高了50.03%、21.31%、19.93%。证明了该方法的优越性。

    Abstract:

    The data-driven approach to rolling bearing remaining useful life (RUL) prediction shows great potential, but there is still room for improvement. Therefore, a prediction method of rolling bearing RUL based on Autoformer model is proposed. Combined with the expert knowledge in this field, the original signal of rolling bearing is artificially extracted and optimized, and the complex mapping relationship between input features and RUL is mined by using the powerful multi-dimensional feature extraction capability of Transformer models. According to the periodic characteristics of the vibration signal of rolling bearings, the Autoformer model is used to decompose the time series to deal with the trend term and the periodic term separately. Experimental results show that the average scores of the proposed prediction method on the PHM2012 dataset is improved by 50.03%, 21.31% and 19.93% respectively, compared with other methods in the literature. Proves the superiority of this method.

    参考文献
    相似文献
    引证文献
引用本文

薛林,王豪,王云森,陆尧,何群,张德健.基于Autoformer的滚动轴承剩余使用寿命预测[J].电子测量技术,2023,46(13):169-175

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-01-22
  • 出版日期:
文章二维码