基于OS-ELM与模糊PID的自适应打磨头控制系统
DOI:
CSTR:
作者:
作者单位:

江苏海洋大学机械工程学院 连云港 222005

作者简介:

通讯作者:

中图分类号:

TP273

基金项目:

江苏省研究生科研与实践创新计划项目(KYCX2022-07)资助


Adaptive grinding head control system based on OS-ELM and fuzzy PID
Author:
Affiliation:

Adaptive grinding head control system based on OS-ELM and fuzzy PID

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对风电叶片自适应打磨装置需求,提出了一种基于OS-ELM的模糊PID控制的自适应恒力打磨装置,通过结合OS-ELM来更快速的整定模糊PID控制器的控制参数输入,然后通过模糊规则得到合适KP、KI、KD输入初值,实现在线整定PID控制参数。通过MATLAB\\Simulink仿真软件对打磨头控制系统的仿真模型进行控制系统验证优化,最后通过装置样机实验,对系统控制效率,稳定性,打磨效果进行检测。实验得出该装置能够满足风电叶片进行恒力亮面打磨,打磨效率显著提高,打磨后产品粗糙度10~12 μm之间,满足企业打磨后叶片粗糙度要求。

    Abstract:

    For the demand of wind turbine blade adaptive grinding device, this paper proposes an adaptive constant force grinding device with fuzzy PID control based on online sequential extreme learning machines (OS-ELM), by combining OS-ELM to rectify the control parameter input of fuzzy PID controller more quickly, and then get the suitable KP、KI、KD input initial values by fuzzy rules to achieve the PID control parameters are adjusted online. The simulation model of the grinding head control system is validated and optimized by MATLAB/Simulink simulation software, and finally the system control efficiency, stability and grinding effect are tested by the device prototype experiment. The experiments concluded that the device is capable of constant force bright surface grinding of wind turbine blades, the grinding efficiency is significantly improved, and the roughness of the product after grinding is between 10~12 μm, which meets the requirements of the enterprise after grinding blade roughness.

    参考文献
    相似文献
    引证文献
引用本文

郑楠,王惠明,张元良,周庆贵,尹希泽.基于OS-ELM与模糊PID的自适应打磨头控制系统[J].电子测量技术,2023,46(13):1-7

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-01-22
  • 出版日期:
文章二维码