基于通道剪枝的ACAM-YOLOv5s绝缘子缺陷检测
DOI:
CSTR:
作者:
作者单位:

沈阳化工大学信息工程学院 沈阳 110142

作者简介:

通讯作者:

中图分类号:

TP391.4

基金项目:

国家重点研发计划(2018YB1700200)、2020年辽宁省高等学校创新人才支持计划(2020-94)、2021年度高等学校基本科研项目重点项目(LJKZ0442)资助


ACAM-YOLOv5s insulator defect detection based on channel pruning
Author:
Affiliation:

School of Information Engineering, Shenyang University of Chemical Technology,Shenyang 110142, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对现有的绝缘子缺陷检测深度神经网络模型规模大、计算资源消耗高、检测精度低,难以部署在边缘端,本文基于通道剪枝和YOLOv5s方法提出具有非对称卷积和注意力机制的轻量级绝缘子缺陷检测模型ACAM-YOLOv5s。ACAM-YOLOv5s模型采用非对称卷积模块ACBlock替换YOLOv5s骨干网络残差结构中的标准卷积,并结合通道和空间混合的注意力CBAM进行特征融合,以增强骨干网络的表达能力、特征提取能力以及鲁棒性。引入对边界框大小和位置灵敏性高的PIoU作为定位回归损失,解决绝缘子纵横比高导致缺陷检测定位准确率低的问题。基于BN层通道剪枝方法对ACAM-YOLOv5s模型进一步稀疏化训练、剪枝和微调,得到轻量化缺陷检测模型。实验结果表明,剪枝后的ACAM-YOLOv5s模型和原始YOLOv5s相比,在检测精度、计算量和模型体积方面,具有相对优势,能够满足边缘设备部署的需求,在无人机航拍绝缘子缺陷检测领域具有潜在价值。

    Abstract:

    To address the existing deep neural network models for insulator defect detection are large in size, high in computational resource consumption, low in detection accuracy and difficult to deploy at the edge end. In this paper, we propose a lightweight insulator defect detection model ACAM-YOLOv5s with asymmetric convolution and attention mechanism based on channel pruning and YOLOv5s method. The ACAM-YOLOv5s model uses the asymmetric convolution module ACBlock to replace the standard convolution in the residual structure of the YOLOv5s backbone network, combined with the attention CBAM of channel and spatial blending for feature fusion to enhance the expressiveness, feature extraction and robustness of the backbone network. PIoU, which is highly sensitive to the size and position of the bounding box, was introduced as a localisation regression loss to address the problem of low defect detection localisation accuracy due to high insulator aspect ratios. The experimental results show that the pruned ACAM-YOLOv5s model has relative advantages over the original YOLOv5s in terms of detection accuracy, computational volume and model size, which can meet the needs of edge device deployment and has potential value in the field of UAV aerial insulator defect detection.

    参考文献
    相似文献
    引证文献
引用本文

赵立杰,袁昌彪,黄明忠,王国刚,张延华.基于通道剪枝的ACAM-YOLOv5s绝缘子缺陷检测[J].电子测量技术,2023,46(9):108-116

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-02-05
  • 出版日期:
文章二维码