单点测量数据多模态时序图像框架对人体跌倒姿态的鉴别
DOI:
CSTR:
作者:
作者单位:

1.三峡大学电气与新能源学院 宜昌 443000; 2.新能源微电网湖北省协同创新中心三峡大学 宜昌 443000

作者简介:

通讯作者:

中图分类号:

TP391.41

基金项目:

湖北省自然科学基金青年项目(2020CFB248)资助


Recognition of human fall posture using multi-mode time-series image frme based on single-point measurement data
Author:
Affiliation:

1.College of Electrical Engineering and New Energy, China Three Gorges University,Yichang 443000, China; 2.Hubei Provincial Collaborative Innovation Center for New Energy Microgrid, China Three Gorges University, Yichang 443000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了准确识别老人跌倒姿态,及时进行医疗干预,提出一种基于多模态时序图像的人体跌倒姿态鉴别方法。首先将合加速度进行小波包分解、重构出3个子序列,利用3种时序图像算法将之转化,得到3种三通道时序图像;然后通过ResNet-18提取其高维特征,运用多模态特征融合;最后将融合结果结合改进随机森林算法,完成人体跌倒姿态的鉴别。在UMAFall和SisFall两个公开数据集进行验证,得到98.7%和99.3%的精准率。结果表明,该方法在人体跌倒鉴别中具有较高准确性,可为跌倒的老人及时提供帮助。

    Abstract:

    To accurately identify the elderly′s fall posture and timely carry out the medical intervention, a human fall posture identification method based on multi-modal time series images was proposed. First, the resultant acceleration is decomposed into three sub-sequences by wavelet packet, and then three time series image algorithms are used to transform the resultant acceleration into three three-channel time series images. Then, its high-dimensional features are extracted through ResNet-18, and multimodal feature fusion is used. Finally, the fusion results are combined with the improved random forest algorithm to complete the identification of human fall posture. The accuracy of 98.7% and 99.3% were verified in UMAFall and SisFall. The results show that the method has high accuracy in the identification of human falls, and can provide timely help for elderly people who fall.

    参考文献
    相似文献
    引证文献
引用本文

孙坚,胡鹏程.单点测量数据多模态时序图像框架对人体跌倒姿态的鉴别[J].电子测量技术,2023,46(11):83-89

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-02-05
  • 出版日期:
文章二维码