基于多尺度融合模型的化工故障诊断
DOI:
CSTR:
作者:
作者单位:

北京化工大学信息科学与技术学院 北京 100029

作者简介:

通讯作者:

中图分类号:

TP391.5

基金项目:


Chemical fault diagnosis based on multi-scale fusion model
Author:
Affiliation:

School of Information Science and Technology, Beijing University of Chemical Technology,Beijing 100029, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对目前化工过程故障诊断中降噪效果不佳、多尺度特征未区分重要性、时序特征提取不充分等问题,本文提出了一种基于多尺度融合模型的化工故障诊断方法,该方法将注意力机制分别与软阈值方法和多尺度学习相结合,构建了多尺度深度残差收缩网络,并将提取到的多尺度空间特征送入双向门控循环单元进一步提取时序特征,相比于单通道网络,双向门控循环单元不仅能够完成对过去信息的学习,而且还能够完成对未来信息的学习,因此能够得到更多的时间关联信息。最后使用修正田纳西伊斯曼过程数据进行验证,最终取得了95.08%的分类精度和94.76%的召回率,明显优于对比方法,证明了方法的有效性。

    Abstract:

    Aiming at the problems of poor noise reduction effect, failure to distinguish the importance of multi-scale features, and insufficient extraction of temporal features in the current fault diagnosis of chemical processes, this paper proposes a chemical fault diagnosis method based on multi-scale fusion model. In this method, the attention mechanism is combined with soft threshold method and multi-scale learning respectively, and a multi-scale deep residual shrinkage network (MDRSN) is constructed. Moreover, the extracted multi-scale spatial features are sent to the bidirectional gated cyclic unit (BIGRU) to further extract temporal features. Compared with the single-channel network, BIGRU can not only complete the learning of past information, but also complete the learning of future moment information, so more temporal correlation information can be obtained. Finally, the modified Tennessee-Eastman process data were used to verify the classification accuracy of 95.08% and the recall rate of 94.76%, which was obviously better than the comparison method, and the effectiveness of the method was proved.

    参考文献
    相似文献
    引证文献
引用本文

杨晓岗,夏涛.基于多尺度融合模型的化工故障诊断[J].电子测量技术,2023,46(13):8-16

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-01-22
  • 出版日期:
文章二维码