基于多层注意力机制的4DC-BGRU脑电情感识别
DOI:
CSTR:
作者:
作者单位:

太原理工大学信息与计算机学院 晋中 030600

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:

国家自然科学基金(62201377)、山西省回国留学人员科研项目(2022072)、山西省自然科学基金(201701D121058)、山西省回国留学科研项目(201701D121058)资助


EEG emotion recognition by 4DC-BGRU based on multi-level attention mechanism
Author:
Affiliation:

College of Information and Computer, Taiyuan University of Technology,Jinzhong 030600, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了提高脑电情感识别的准确率,提取更丰富的特征信息,提升网络模型稳定性,提出一种改进的基于多层注意力机制的脑电情感识别模型。在特征提取方面,将原始脑电信号转换成四维空间频谱时间结构,提取丰富的脑电信息。在网络模型方面,构建双路卷积神经网络学习空间及频率信息,有效提取多尺度特征,增加网络宽度来学习更丰富的特征信息;在卷积层及池化层后融入批量归一化层,防止过拟合。最后,构建多层注意力机制双向门控循环单元模块处理时间特征并配合Softmax分类。采用双向门控循环单元学习更全面的上下级特征信息。利用多层注意力机制使四维特征中不同时间切片与整体时间切片之间产生关联。该文在DEAP数据集唤醒度和效价两个维度进行了评估实验,二分类平均准确率分别为96.38%和96.73%,四分类平均准确率为93.78%。实验结果显示,与单路卷积神经网络及其他文献算法相比,该文算法的平均准确率有所提高,表明该算法可以有效提升脑电情感识别性能。

    Abstract:

    In order to improve the accuracy of EEG emotion recognition, extract richer feature information and improve the stability of network model, an improved EEG emotion recognition model based on multi-level attention mechanism is proposed. In the aspect of feature extraction, the original EEG signal was transformed into four-dimensional space spectrum time structure to extract rich EEG information. In the aspect of network model, a two-way convolution neural network was constructed to learn spatial and frequency information. It can effectively extract multi-scale features and increase the network width to learn richer feature information. After the convolution layer and pool layer, the batch normalization layer was integrated to prevent over fitting. Finally, a multi-level attention mechanism-bidirectional gated recurrent unit module was constructed to process the time characteristics and cooperate with Softmax classification. The bidirectional gated recurrent unit was used to learn more comprehensive upper and lower level feature information. The multi-level attention mechanism was used to correlate different time slices with the overall time slices in four-dimensional features. The evaluation experiments were carried out in two dimensions of arousal and potency of DEAP data set. The average accuracy of two classifications were 96.38% and 96.73% respectively, and the average accuracy of four classifications was 93.78%. The experimental results show that the average accuracy of this algorithm is improved compared with single channel convolutional neural network and other literature algorithms, which shows that this algorithm can effectively improve the performance of EEG emotion recognition.

    参考文献
    相似文献
    引证文献
引用本文

张丽彩,李鸿燕,司马飞扬,申雁.基于多层注意力机制的4DC-BGRU脑电情感识别[J].电子测量技术,2023,46(8):134-141

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-02-07
  • 出版日期:
文章二维码