基于ARM平台目标检测的轻量化方法
DOI:
CSTR:
作者:
作者单位:

沈阳航空航天大学电子信息工程学院 沈阳 110136

作者简介:

通讯作者:

中图分类号:

TP391.4

基金项目:


Lightweight method of object detection based on ARM platform
Author:
Affiliation:

School of Electronic Information Engineering,Shenyang Aerospace University,Shenyang 110136, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了解决基于深度学习的目标检测算法庞大的计算量和内存占用,导致在ARM平台的边端设备上部署难度大的问题。本文提出一种基于ARM平台目标检测的轻量化方法,首次将网络中的批标准化层缩放因子和卷积层卷积核参数同时添加约束,稀疏训练后将其作为通道重要性判断的两个准则,将不重要的通道双准则剪枝;针对剪枝效果较差的层结合CBAM注意力设计轻量化结构替换;再对结构替换后的模型重新训练得到最终模型。在单目标检测和多目标检测场景,分别对改进的YOLOv5n和YOLOv5s实验,结果表明该方法在ARM设备上均优于常规轻量化方法。在人物检测场景中,对YOLOv5n优化后的模型大小仅有0.68 MB,在ARM设备上单核CPU部署时检测速度达到45 fps,完全满足实时性要求,大幅度降低边端设备部署难度和硬件成本。

    Abstract:

    To tackle the difficulty in deploying on the side devices of the ARM platform triggered by the huge computation amount and memory occupation of deep learningbased object detection algorithms, this paper presents a lightweight method based on ARM platform object detection. Innovatively, this research adds constraints to the scaling factor of the batched normalized layer and the convolution kernel parameter of the convolution layer in the network, performs sparse training, and uses the scaling factor and the convolution kernel parameter as two criteria for judging the importance of channels and thus pruning the unimportant channels. Furthermore, CBAM attention is adopted to achieve lightweight structure replacement of layers with poor pruning effect. On this basis, the model processed with structure replacement is re-trained to eventually build the final model. Lastly, the optimized YOLOv5n and YOLOv5s are tested respectively in single-object detection and multi-object detection scenarios. The test results show that the method proposed in this research is superior to the conventional lightweight method on ARM devices. In the character detection scenario, the size of the optimized YOLOv5n model is just 0.68 MB, and the detection speed can reach 45 fps when the single-core CPU is deployed on ARM devices, which can well meet the realtime requirements and also greatly reduce the difficulty and hardware cost of the deployment on side devices.

    参考文献
    相似文献
    引证文献
引用本文

张雷,童虎庆,谢锦昌,杨昆.基于ARM平台目标检测的轻量化方法[J].电子测量技术,2023,46(12):118-124

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-01-31
  • 出版日期:
文章二维码