基于NOMA的无人机群应急通信系统总和速率优化
DOI:
CSTR:
作者:
作者单位:

1.广西嵌入式技术与智能系统重点实验室 桂林 541004; 2.桂林理工大学信息科学与工程学院 桂林 54100

作者简介:

通讯作者:

中图分类号:

TN92

基金项目:

广西自然科学基金(2018GXNSFBA281057)、桂林理工大学博士科研启动基金(GUTQDJJ2014042)、广西嵌入式技术与智能系统重点实验室开放基金(2019-2-7)项目资助


Sum rate optimization for NOMA-based UAVs emergency communication system
Author:
Affiliation:

1.Guangxi key Laboratory of Embedded Technology and Intelligent System,Guilin 541004,China; 2.School of Information Science and Engineering, Guilin University of Technology,Guilin 541004, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对自然灾害后地面基础设施无法有效提供可靠通信的问题,提出基于NOMA的无人机群应急通信系统总和速率优化方案。该方案首先在无人机最大发射功率、地面用户服务质量等约束下,构建一种以地面用户总和通信速率最大化为目标的无人机群辅助应急通信模型;其次,通过改进模拟退火算法实现NOMA机制下无人机功率分配;最后,通过改进K-means算法对地面用户进行聚类,优化无人机与用户的路径损耗及视距链路概率完成无人机3D部署,实现系统总和速率最大化。数值仿真结果验证了所提方案的有效性。

    Abstract:

    To address the problem that ground infrastructure cannot provide emergency communication effectively after natural disasters, a sum rate optimization scheme for unmanned aerial vehicles swarm-assisted emergency communication system based NOMA technology is proposed. Firstly, the scheme constructs a unmanned aerial vehicles swarm-assisted emergency communication model, the model objective of maximizing the total sum communication rate of ground users under the constraints of maximum UAVs transmitting power and quality of service for ground user; Secondly, the power allocation under the NOMA mechanism is implemented by improving the simulated annealing algorithm; Finally, the ground users are clustered by improved K-means algorithm, and then the path loss and line-of-sight link probability between unmanned aerial vehicles and users are optimized for completing the three-dimensional deployment and maximizing the system sum rate. The numerical simulation results verify the effectiveness of the proposed scheme.

    参考文献
    相似文献
    引证文献
引用本文

邱斌,李学礼.基于NOMA的无人机群应急通信系统总和速率优化[J].电子测量技术,2023,46(13):139-145

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-01-22
  • 出版日期:
文章二维码