基于投票机制的室内WiFi指纹定位算法
DOI:
CSTR:
作者:
作者单位:

1.南京信息工程大学电子与信息工程学院 南京 210044; 2.南京信息工程大学人工智能学院(未来技术学院) 南京 210044

作者简介:

通讯作者:

中图分类号:

TN925

基金项目:

国家自然科学基金(62001238)项目资助


Indoor WiFi fingerprinting algorithm based on voting mechanism
Author:
Affiliation:

1.School of Electronics & Information Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China; 2.School of Artificial Intelligence (School of Future Technology), Nanjing University of Information Science & Technology,Nanjing 210044, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统室内WiFi指纹定位算法中单个距离度量的局限性且未考虑到dBm表示与功率之间的关系的问题,提出一种基于投票机制的室内WiFi指纹定位算法。在采集到接收信号强度(RSS)数据后,首先,对RSS数据进行预处理;然后,基于投票机制对每种距离度量选中的近邻点取交集组成公共近邻点,并统计每个公共近邻点出现的频率;最后,通过概率加权得到最终定位结果。实验结果表明,所提出方法的定位精度为1.63 m,与K近邻(KNN)、斯皮尔曼(Spearman)和肯德尔相关系数(KTCC)方法的定位精度相比,平均定位精度分别提升了10%、33%和58%。此外,与MAN2数据集中的最优定位精度1.86 m相比,定位精度提高了12%。

    Abstract:

    Aiming at the limitation of a single distance metric in the traditional indoor WiFi fingerprinting algorithm and the relationship between dBm representation and power is not considered, an indoor WiFi fingerprinting algorithm based on voting mechanism is proposed. After collecting the received signal strength (RSS) data, first, preprocess the RSS data. Then, based on the voting mechanism, the nearest neighbors selected by each distance metric are intersected to form common neighbors, and count each the frequency of common neighbor points. Finally, the final positioning result is obtained by probability weighting. Experimental results show that the proposed method achieves a localization accuracy of 1.63 m, and the average localization accuracy is improved by 10%, 33%, and 58%, respectively, compared with the localization accuracy of KNN, Spearman, and KTCC methods. Furthermore, the localization accuracy is improved by 12% compared to the optimal localization accuracy of 1.86 m in the MAN2 dataset.

    参考文献
    相似文献
    引证文献
引用本文

王开亮,谢亚琴,宦海,周莉莉.基于投票机制的室内WiFi指纹定位算法[J].电子测量技术,2023,46(12):61-68

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-01-31
  • 出版日期:
文章二维码