侧窗自适应彩色增强算法在司机行为识别系统中的应用研究
DOI:
CSTR:
作者:
作者单位:

株洲中车时代电气股份有限公司数据与智能技术中心 株洲 412001

作者简介:

通讯作者:

中图分类号:

TP2

基金项目:


Adaptive color enhancement based on side window filtering and application to driver behavior recognition system
Author:
Affiliation:

Data and Intelligence R&D Center, Zhuzhou CRRC Times Electric Co.,Ltd.,Zhuzhou 412001, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    外界光照的变化容易干扰机车司机室视频的图像质量,出现图像亮度异常现象,导致司机行为识别系统检测精度下降。针对此问题,提出了一种基于侧窗滤波的自适应非线性彩色增强算法,并设计了一种新型司机行为识别系统。首先利用主聚类推定算法,建立图像照度分类模型,将司机室视频图像分类为低光照、正常光照和曝光3种场景。然后采用本文所提算法对低光照图像进行增强,有效提高了图像亮度、对比度和加强了暗区细节信息。最后利用深度学习方法,建立了基于YOLOv3的司机行为检测模型。为证明可行性,选取某铁路局机务段的6A视频在NVIDIA视频分析服务器上进行试验,结果表明本文提出的低光照图像增强算法能够更好地改善图像质量,利用YOLOv3对增强后的低光照场景图像进行目标检测,项点的检测精度达到了97.20%,与优化前相比提高了6.33%,满足机务段视频智能分析的实际需求。

    Abstract:

    The image quality of locomotive driver′s room video is easily disturbed, especially when the image brightness abnormality caused by external lighting changes, which leads to the decrease of system detection accuracy. To address this problem, this paper proposes an adaptive nonlinear color enhancement algorithm based on side-window filtering for pre-processing, and designs a novel driver behavior recognition system scheme. Using the principal clustering presumption algorithm, an image illumination classification model is established to classify 6A driver′s room video images into three scenes: low illumination, normal illumination and exposure. Then the algorithm proposed in this paper is used to enhance the low-illumination 6A driver′s room video image, which effectively improves the image brightness, contrast and enhances the detail information in dark areas. YOLOv3-based driving behavior detection model is established using a deep learning method. To prove the feasibility of the method, the locomotive 6A video from a railroad bureau′s locomotive depot was selected for experiments on an NVIDIA video analysis server. The results show that the low-light image enhancement algorithm proposed in this paper can better improve the image quality, and the object detection accuracy of the item point reached 97.20%, which was improved by 6.33% compared with before optimization, and meet the actual demand of video intelligent analysis in the locomotive depot of railroad bureau.

    参考文献
    相似文献
    引证文献
引用本文

崔宵洋,袁小军,田野,姚巍巍,彭联贴,李晨.侧窗自适应彩色增强算法在司机行为识别系统中的应用研究[J].电子测量技术,2023,46(11):99-106

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-02-05
  • 出版日期:
文章二维码