基于改进RRT-Connect算法的机械臂运动规划
DOI:
CSTR:
作者:
作者单位:

1.湖北工业大学机械工程学院 武汉 430068; 2.湖北省现代制造质量工程重点实验室 武汉 430068

作者简介:

通讯作者:

中图分类号:

THI241.2

基金项目:

国家自然科学基金(51875180)项目资助


Robotic arm motion planning based on improved RRT-Connect algorithm
Author:
Affiliation:

1.School of Mechanical Engineering, Hubei University of Technology,Wuhan 430068, China; 2.Hubei Key Lab of Manufacture Quality Engineering, Wuhan 430068, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对双向快速拓展随机树(RRT-Connect)算法在多障碍物复杂环境下算法收敛速度慢、搜索效率低、采样具有随机性等问题,提出一种基于椭球子集采样的RRT-Connect算法,首先在传统的RRT-Connect算法的基础上,结合目标偏执采样策略和椭球子集采样的优势,构造一种新的采样方法,对采样区域进行约束,在此基础上找到从起始点到目标点的最优路径点集合,并将该路径作为初始路径,通过引入基于三角不等式的路径修剪算法,在迭代过程中对路径不断优化,得到一条从起始点到目标点的代价小、无碰撞路径,最后结合五次多项式差值算法进行路径优化,生成一条路径平滑且曲率连续的优化路径,从而使机械臂沿着该最优路径快速、准确、稳定的到达目标点。实验结果表明,对比原始的RRT-Connect算法,平均规划时间效率提高了30.5%、平均采样点减少了76.74%、平均路径长度缩短了13.22%,该算法在规划过程中收敛速度更快、搜索效率更高、路径优化效果更显著。

    Abstract:

    Aiming at the problems of slow convergence speed, low search efficiency and random sampling of twoway fast expanding random tree (RRT-CONNECT) algorithm in complex environment with multiple obstacles, this paper proposes an RRT-CONNECT algorithm based on ellipsoid subset sampling. Firstly, on the basis of traditional RRT-Connect algorithm, combined with target paranoid sampling strategy and the advantage of sampling ellipsoid subset, construct a new sampling method, sampling area for constraint, on this basis to find the optimal path from the starting point to the target point point set, and the path as the initial path, by introducing the path pruning algorithm based on triangle inequality, to continuously optimize paths in the iterative process. A path with low cost and no collision was obtained from the starting point to the target point. Finally, a smooth path with continuous curvature was generated by combining the path optimization with the quintic polynomial difference algorithm, so that the manipulator could reach the target point quickly, accurately and stably along the optimal path. Experimental results show that compared with the original RRT-Connect algorithm, the average planning time efficiency is improved by 30.5%, the average sampling points are reduced by 76.74%, and the average path length is shortened by 13.22%. The algorithm has faster convergence speed, higher search efficiency and more significant path optimization effect in the planning process.

    参考文献
    相似文献
    引证文献
引用本文

游达章,杨智杰,张业鹏.基于改进RRT-Connect算法的机械臂运动规划[J].电子测量技术,2023,46(8):112-119

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-02-07
  • 出版日期:
文章二维码