基于YOLO v4优化的航拍绝缘子缺陷图像检测模型
DOI:
CSTR:
作者:
作者单位:

江苏师范大学电气工程及自动化学院 徐州 221116

作者简介:

通讯作者:

中图分类号:

TM75; TP18; TP391.4

基金项目:

国家自然科学基金(62074071,61801197)、2021,2022 江苏高校 “青蓝工程”资助项目、江苏省研究生科研与实践创新计划项目(SJCX22_1251)、江苏省现代教育技术研究所规划课题(2021-R-91616)项目资助


Improved YOLO v4 model for insulator defect detection using aerial imagery
Author:
Affiliation:

School of Electrical Engineering and Automation, Jiangsu Normal University,Xuzhou 221116, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对现有绝缘子缺陷检测模型检测精度低、实时性差和网络参数多的问题,提出了一种基于YOLO v4改进的绝缘子缺陷检测模型。首先,利用改进的VGG卷积神经网络实现了主干特征提取。其次,在加强特征提取网络和预测网络中引入深度可分离卷积,降低了模型的复杂度。再次,在加强特征提取网络中融合通道注意力机制对重要特征进行增强,提升了模型对绝缘子缺陷的目标辨识能力。最后,以平均精度、帧率、参数量等作为评价指标,对基于公共数据集CPLID构建的新数据集进行了消融实验和对比实验。实验结果表明,改进的YOLO v4模型对绝缘子缺陷的检测精度为98.35%,相比于传统的YOLO v4模型提高了6.4%,并且其检测速度和参数量分别为传统YOLO v4模型的1.5倍和37.5%,可实现对航拍绝缘子缺陷图像的高精度实时有效检测。同时,改进的模型相比YOLO v5-M和Faster R-CNN模型在检测精度,速度和模型复杂度上也更具优势。

    Abstract:

    For the issue of low accuracy, poor realtime performance and large network model parameters of the existing insulator defect detection technology, an insulator defect detection model based on improved YOLO v4 is proposed in this study. Firstly, a modified VGG convolutional neural network was applied in the backbone feature extraction. In addition, to reduce the complexity of the model, depthwise separable convolution was introduced in the enhanced feature extraction and prediction networks. Moreover, channel attention mechanism was utilized in the enhanced feature extraction network to enhance the important features. The object recognition ability of the model for insulator defect was further strengthened. Finally, employing Average Precision, Frames Per Second, Parameter Scale, etc. as the evaluation indicators, ablation and comparison experiments were conducted on our constructed dataset based on the public dataset CPLID. The results show that the detection accuracy of the improved YOLO v4 model is 98.35%, which is 6.4% higher than that of the traditional YOLO v4 model. Moreover, the detection speed and parameter scale of the improved model are 1.5 times and 37.5% of those of the traditional YOLO v4 model. Accurate and real-time detection of aerial insulator defect imagery can be realized. Furthermore, the improved model also has higher accuracy, higher speed, and smaller parameter scale compared with other mainstream models YOLO v5-M and Faster R-CNN.

    参考文献
    相似文献
    引证文献
引用本文

霍超,谷晓钢,黄玲琴,栾声扬.基于YOLO v4优化的航拍绝缘子缺陷图像检测模型[J].电子测量技术,2023,46(9):175-181

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-02-05
  • 出版日期:
文章二维码