基于优化概率神经网络的驾驶员疲劳检测
DOI:
CSTR:
作者:
作者单位:

河南科技大学信息工程学院 洛阳 471023

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:

国家自然科学基金(U1504617)项目资助


Driver fatigue detection based on optimized probabilistic neural network
Author:
Affiliation:

School of Information Engineering, Henan University of Science and Technology,Luoyang 471023, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对驾驶员面部疲劳检测问题,提出了一种基于遗传算法优化概率神经网络(PNN)的驾驶员疲劳检测算法。采用基于HOG特征的人脸检测器检测脸部,使用ERT算法进行关键点定位,计算PERCLOS值、眨眼频率、单位时间内打哈欠的时间占比、点头频率4个疲劳特征参数,将其输入到PNN中进行疲劳判别,并使用遗传算法优化PNN的平滑因子,提高疲劳分类准确率。使用NHTU-DDD数据集和YawDD数据集训练网络,使用自采集样本验证模型泛化性能,实验中与SVM、BP神经网络以及未优化的PNN模型对比,SVM、BP神经网络以及未优化的PNN的准确率分别为95.67%,97.67%,95.33%,所提的优化的PNN模型准确率为98.67%,验证了算法的有效性。

    Abstract:

    Aiming at the problem of driver facial fatigue detection, a driver fatigue detection algorithm based on genetic algorithm optimized probabilistic neural network (PNN) was proposed. The face detector based on HOG feature is used to detect the face, and ERT algorithm is used to locate the key points. The four fatigue characteristic parameters including PERCLOS value, blink frequency, the proportion of yawning time per unit time and the frequency of nodding were calculated and input into PNN for fatigue discrimination, and the genetic algorithm was used to optimize the smoothing factor of PNN. Improve the accuracy of fatigue classification. NHTU-DDD dataset and YawDD dataset were used to train the network, and self-collected samples were used to verify the generalization performance of the model. Compared with SVM, BP neural network and unoptimized PNN model, the accuracy rates of SVM, BP neural network and unoptimized PNN were 95.67%, 97.67% and 95.33%, respectively. The accuracy of the proposed optimized PNN model is 98.67%, which verifies the effectiveness of the proposed algorithm.

    参考文献
    相似文献
    引证文献
引用本文

王晗,邱联奎.基于优化概率神经网络的驾驶员疲劳检测[J].电子测量技术,2023,46(12):105-110

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-01-31
  • 出版日期:
文章二维码