基于欧式距离对偶的对抗性无监督域适应算法研究
DOI:
CSTR:
作者:
作者单位:

1.南京信息工程大学人工智能学院 南京 210044; 2.南京信息工程大学电子与信息工程学院 南京 210044

作者简介:

通讯作者:

中图分类号:

TP181

基金项目:

国家自然科学基金(62001238)项目资助


Learning on the Euclidean discrepancy dual for unsupervised domain adaptation
Author:
Affiliation:

1.School of Artificial Intelligence, Nanjing University of Information Science and Technology,Nanjing 210044, China; 2.School of Electronic and Information Engineering, Nanjing University of Information Science and Technology,Nanjing 210044,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在无监督域适应中,对抗性训练框架验证了双分类器差异度量对迁移学习的重要性。经典的 UDA算法采用类内差异来度量双分类器的距离,例如L-1范数和Kullback-Leibler散度。本文从几何角度出发,考虑欧式空间中的双分类器的分布,以及传统的双分类器算法的不足,提出了一种新的欧式对偶度量,并将其纳入到对抗性的 UDA框架中。欧式对偶度量能够有效扩大双重分类器在假设空间中的分布。另外,本文也为欧式对偶度量的理论误差上届提供了理论依据。在公共 UDA 数据集上的实验表明,欧式对偶对抗算法在小规模数据集Digits、中规模数据集Office-31和大规模数据集VisDA的平均准确率分别为98.3%、87.8%和81.7%,很大程度上优于其他具有类内差异的双分类器 UDA 方法,并取得了与最先进方法相当的结果。

    Abstract:

    Recently, the adversarial training framework of maximizing and minimizing the discrepancy between bi-classifier has been proved effective in unsupervised domain adaptation (UDA). Classical UDA approaches usually choose to use some simple intra-class discrepancies to measure the difference between the bi-classifier, such as L-1 norm and Kullback-Leibler divergence. From a geometric point of view, this work designs a novel European dual difference by considering the distribution of dual classifiers in the European Space and combining the defects of the classical dual classifier algorithm, and combines it into this adversarial UDA framework. This novel discrepancy can effectively distinguish the two probabilities predicted by the bi-classifier whether they are close in determinacy or in uncertainty. In addition, we also provide theoretical support to prove the upper bound of the theoretical error of the metric. Experiments on the public UDA dataset show that the average accuracy of the European-style dual adversarial algorithm in the small-scale dataset Digits, the medium-scale dataset Office-31, and the large-scale dataset VisDA are 98.3%, 87.8%, and 81.7%, which outperforms other 2-classifier UDA methods with intra-class variance and achieves results comparable to state-of-the-art methods.

    参考文献
    相似文献
    引证文献
引用本文

宗子杨,何军,宦海,李庆勇.基于欧式距离对偶的对抗性无监督域适应算法研究[J].电子测量技术,2023,46(14):95-

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-01-18
  • 出版日期:
文章二维码