基于改进YOLOX的航拍遥感图像检测模型
DOI:
CSTR:
作者:
作者单位:

重庆三峡学院电子与信息工程学院 重庆 404100

作者简介:

通讯作者:

中图分类号:

TP751.1

基金项目:

国家重点研发计划课题(2021YFB3901405)、科技部专项课题(2021YFB3901400)、重庆市重点实验室开放基金(ZD2020A0301)项目资助


Aerial remote sensing image detection model based on improved YOLOX
Author:
Affiliation:

College of Electronics and Information Engineering, Chongqing Three Gorges College,Chongqing 404100, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对遥感图像中小目标众多,目标尺度变化剧烈,背景复杂所造成的目标检测精度低的问题,提出了一种基于改进YOLOX的目标检测算法,在YOLOX的基础上,首先在主干网络中加入注意力机制提高网络对遥感图像中小目标的感知能力,丰富语义信息;其次在特征融合部分中加入MSCER多尺度信息融合模块,通过融合不同尺寸的特征图,减少遥感图像因为尺度变化造成的图像细节信息损失;最后通过引入CIoU损失函数加快网络收敛速度,使其满足实时性的需求。本文将提出的检测算法在RSOD遥感数据集进行实验,平均检测准确率为9512%,相比于未做改进的YOLOX,检测精度提高了869%。实验结果证明,所提方法具有更高的检测精度。

    Abstract:

    Aiming at the problem of low target detection accuracy caused by numerous small targets in remote sensing images, drastic changes in target scales and complex backgrounds, a target detection algorithm based on improved YOLOX is proposed. On the basis of YOLOX, firstly, an attention mechanism is added to the backbone network to improve the network′s ability to perceive small targets in remote sensing images and enrich the semantic information; secondly, the feature fusion part is added to the MSCER multiscale information fusion module in the feature fusion part to reduce the loss of image detail information caused by scale changes in remote sensing images through feature maps of different sizes; finally, the convergence speed of the network is accelerated by introducing CIoU loss function to make it meet the demand of realtime. In this paper, the proposed detection algorithm is experimented on the RSOD remote sensing dataset, and the average detection accuracy is 9512%, which is 869% higher than that of the unimproved YOLOX. The experimental results prove that the proposed method has higher detection accuracy.

    参考文献
    相似文献
    引证文献
引用本文

左露,牛晓伟,朱春惠.基于改进YOLOX的航拍遥感图像检测模型[J].电子测量技术,2023,46(16):179-186

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-01-04
  • 出版日期:
文章二维码