心电图ECG信号自动检测特征提取方法研究进展
DOI:
CSTR:
作者:
作者单位:

1. 华南理工大学 机械与汽车工程学院 广东 广州 510640;2. 广东省珠海市质量计量监督检测所 广东珠海 519060

作者简介:

通讯作者:

中图分类号:

TP391.4

基金项目:

广东省市场监督管理局科技项目(No. 2022CZ14)


Overview of automatic detection method of ECG signal based on feature extraction
Author:
Affiliation:

1. School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China; 2. Zhuhai Branch, Guangdong Zhuhai Supervision Testing Institute of Quality and Metrology, Guangdong Zhuhai 519060, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    心电图特征参数特征提取技术是人体信号智能化检测领域研究热点之一。论文从差分阈值、模板匹配、小波变换、神经网络等多种特征提取法系统评述常见心电图特征参数自动化检测提取方法,阐述各种方法机理、主要研究应用方向及特点,总结分析指出各方法在不同应用场景下的优缺点。其中神经网络特征提取法准确性高、鲁棒性好,是心电图特征参数提取研究趋势及热点,后续可将神经网络深度学习、自学习与差分阈值、模板匹配、小波变换等特征提取方法相结合,实现更高要求的复杂心电图特征参数检测。

    Abstract:

    Electrocardiography (ECG) feature parameter extraction technology is one of the research hotspots in the field of human body signals intelligent detection. This paper systematically reviews the common automatic detection and extraction methods of ECG feature parameters, including differential threshold methods, template matching methods, wavelet transform methods, and neural network methods, and explains the mechanisms, characteristics and main application research directions of various methods, and analyzes the advantages and disadvantages of each method in different application scenarios. The neural network feature extraction method has high accuracy and good robustness, and it is the research trend and hot spot of ECG feature parameter extraction. In subsequent stages, deep learning and self-learning of neural network can be combined with differential threshold, template matching, wavelet transformation and other feature extraction methods to achieve higher requirements for complex ECG feature parameter detection.

    参考文献
    相似文献
    引证文献
引用本文

陈韬文,宋家骏,彭湘安,刘桂雄.心电图ECG信号自动检测特征提取方法研究进展[J].电子测量技术,2022,45(19):106-112

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-03-29
  • 出版日期:
文章二维码